Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 66: 101604, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184065

RESUMEN

OBJECTIVE: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS: Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION: These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.


Asunto(s)
Ingestión de Alimentos , Neuronas , Receptores Acoplados a Proteínas G , Animales , Ratones , Hipotálamo/citología , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Mol Metab ; 42: 101070, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32898712

RESUMEN

The nucleus of the solitary tract (NTS) is emerging as a major site of action for the appetite-suppressive effects of leading pharmacotherapies currently investigated to treat obesity. However, our understanding of how NTS neurons regulate appetite remains incomplete. OBJECTIVES: In this study, we used NTS nutrient sensing as an entry point to characterize stimulus-defined neuronal ensembles engaged by the NTS to produce physiological satiety. METHODS: We combined histological analysis, neuroanatomical assessment using inducible viral tracing tools, and functional tests to characterize hindbrain-forebrain circuits engaged by NTS leucine sensing to suppress hunger. RESULTS: We found that NTS detection of leucine engages NTS prolactin-releasing peptide (PrRP) neurons to inhibit AgRP neurons via a population of leptin receptor-expressing neurons in the dorsomedial hypothalamus. This circuit is necessary for the anorectic response to NTS leucine, the appetite-suppressive effect of high-protein diets, and the long-term control of energy balance. CONCLUSIONS: These results extend the integrative capability of AgRP neurons to include brainstem nutrient sensing inputs.


Asunto(s)
Regulación del Apetito/fisiología , Conducta Alimentaria/fisiología , Núcleo Solitario/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Apetito/fisiología , Encéfalo/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Leptina/metabolismo , Leucina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Obesidad , Núcleo Solitario/metabolismo
3.
Cell Rep ; 30(9): 3067-3078.e5, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130907

RESUMEN

Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.


Asunto(s)
Hiperglucemia/fisiopatología , Hipotálamo/metabolismo , Comidas , Neuroglía/patología , Plasticidad Neuronal , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Glucemia/metabolismo , Fenómenos Electrofisiológicos , Conducta Alimentaria , Hiperglucemia/sangre , Ratones Endogámicos C57BL , Ratones Transgénicos , Periodo Posprandial , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA