Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 18(8): 4796-4802, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30001138

RESUMEN

Semiconductor nanowires can act as nanoscaled optical fibers, enabling them to guide and concentrate light emitted by surface-bound fluorophores, potentially enhancing the sensitivity of optical biosensing. While parameters such as the nanowire geometry and the fluorophore wavelength can be expected to strongly influence this lightguiding effect, no detailed description of their effect on in-coupling of fluorescent emission is available to date. Here, we use confocal imaging to quantify the lightguiding effect in GaP nanowires as a function of nanowire geometry and light wavelength. Using a combination of finite-difference time-domain simulations and analytical approaches, we identify the role of multiple waveguide modes for the observed lightguiding. The normalized frequency parameter, based on the step-index approximation, predicts the lightguiding ability of the nanowires as a function of diameter and fluorophore wavelength, providing a useful guide for the design of optical biosensors based on nanowires.


Asunto(s)
Técnicas Biosensibles/instrumentación , Colorantes Fluorescentes/química , Galio/química , Nanocables/química , Fosfinas/química , Óxido de Aluminio/química , Fluorescencia , Luz , Fibras Ópticas , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
2.
Eur Biophys J ; 45(5): 405-12, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26780236

RESUMEN

There are abundant examples of nanoclusters and inorganic microcrystals in biology. Their study under physiologically relevant conditions remains challenging due to their heterogeneity, instability, and the requirements of sample preparation. Advantages of using neutron diffraction and contrast matching to characterize biomaterials are highlighted in this article. We have applied these and complementary techniques to search for nanocrystals within clusters of calcium phosphate sequestered by bovine phosphopeptides, derived from osteopontin or casein. The neutron diffraction patterns show broad features that could be consistent with hexagonal hydroxyapatite crystallites smaller than 18.9 Å. Such nanocrystallites are, however, undetected by the complementary X-ray and FTIR data, collected on the same samples. The absence of a distinct diffraction pattern from the nanoclusters supports the generally accepted amorphous calcium phosphate structure of the mineral core.


Asunto(s)
Fosfatos de Calcio/química , Nanopartículas/química , Fosfoproteínas/química , Agua/química , Animales , Bovinos , Osteopontina/química , Fosfopéptidos/química
3.
Soft Matter ; 11(10): 1973-90, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25626114

RESUMEN

We describe the formation and structure of nucleolipid/dendrimer multilayer films controlled by non-covalent interactions to obtain biomaterials that exhibit molecular recognition of nucleic acids. Layers of cationic poly(amidoamine) (PAMAM) dendrimers of generation 4 and the anionic nucleolipids 1,2-dilauroyl-sn-glycero-3-phosphatidylnucleosides (DLPNs) based on uridine (DLPU) and adenosine (DLPA) were first formed at the silica-water interface. The PAMAM/DLPN layers were then exposed to short oligonucleotides, polynucleotides and single stranded DNA (ssDNA). The interfacial properties were characterized using quartz crystal microbalance with dissipation monitoring, attenuated total reflection Fourier transform infrared spectroscopy and neutron reflectometry. Both types of DLPN were found to adsorb as aggregates to preadsorbed PAMAM monolayers with a similar interfacial structure and composition before rinsing with pure aqueous solution. Nucleic acids were found to interact with PAMAM/DLPA layers due to base pairing interactions, while the PAMAM/DLPU layers did not have the same capability. This was attributed to the structure of the DLPA layer, which is formed by aggregates that extend from the interface towards the bulk after rinsing with pure solvent, while the DLPU layer forms compact structures. In complementary experiments using a different protocol, premixed PAMAM/DLPN samples adsorbed to hydrophilic silica only when the mixtures contained positively charged aggregates, which is rationalized in terms of electrostatic forces. The PAMAM/DLPA layers formed from the adsorption of these mixtures also bind ssDNA although in this case the adsorption is mediated by the opposite charges of the film and the nucleic acid rather than specific base pairing. The observed molecular recognition of nucleic acids by dendrimers functionalized via non-covalent interactions with nucleolipids is discussed in terms of biomedical applications such as gene vectors and biosensors.


Asunto(s)
Adenosina/química , Dendrímeros/química , Lípidos/química , Uridina/química , ADN/química , Polinucleótidos/química , Dióxido de Silicio/química , Agua/química
4.
Biochim Biophys Acta ; 1828(2): 801-15, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23159483

RESUMEN

Surfactin, a bacterial amphiphilic lipopeptide is attracting more and more attention in view of its bioactive properties which are in relation with its ability to interact with lipids of biological membranes. In this work, we investigated the effect of surfactin on membrane structure using model of membranes, vesicles as well as supported bilayers, presenting coexistence of fluid-disordered (DOPC) and gel (DPPC) phases. A range of complementary methods was used including AFM, ellipsometry, dynamic light scattering, fluorescence measurements of Laurdan, DPH, calcein release, and octadecylrhodamine B dequenching. Our findings demonstrated that surfactin concentration is critical for its effect on the membrane. The results suggest that the presence of rigid domains can play an essential role in the first step of surfactin insertion and that surfactin interacts both with the membrane polar heads and the acyl chain region. A mechanism for the surfactin lipid membrane interaction, consisting of three sequential structural and morphological changes, is proposed. At concentrations below the CMC, surfactin inserted at the boundary between gel and fluid lipid domains, inhibited phase separation and stiffened the bilayer without global morphological change of liposomes. At concentrations close to CMC, surfactin solubilized the fluid phospholipid phase and increased order in the remainder of the lipid bilayer. At higher surfactin concentrations, both the fluid and the rigid bilayer structures were dissolved into mixed micelles and other structures presenting a wide size distribution.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Lipopéptidos/química , Péptidos Cíclicos/química , 1,2-Dipalmitoilfosfatidilcolina/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Fenómenos Fisiológicos Bacterianos , Calorimetría/métodos , Difenilhexatrieno/química , Fluoresceínas/química , Lauratos/química , Luz , Membrana Dobles de Lípidos/química , Liposomas/química , Micelas , Microscopía de Fuerza Atómica/métodos , Microscopía Fluorescente/métodos , Fosfatidilcolinas/química , Fosfolípidos/química , Rodaminas/química , Dispersión de Radiación , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA