Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 43: 101127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242659

RESUMEN

OBJECTIVE: More than 300 genetic variants have been robustly associated with measures of human adiposity. Highly penetrant mutations causing human obesity do so largely by disrupting satiety pathways in the brain and increasing food intake. Most of the common obesity-predisposing variants are in, or near, genes expressed highly in the brain, but little is known of their function. Exploring the biology of these genes at scale in mammalian systems is challenging. We sought to establish and validate the use of a multicomponent screen for feeding behaviour phenotypes, taking advantage of the tractable model organism Drosophila melanogaster. METHODS: We validated a screen for feeding behaviour in Drosophila by comparing results after disrupting the expression of centrally expressed genes that influence energy balance in flies to those of 10 control genes. We then used this screen to explore the effects of disrupted expression of genes either a) implicated in energy homeostasis through human genome-wide association studies (GWAS) or b) expressed and nutritionally responsive in specific populations of hypothalamic neurons with a known role in feeding/fasting. RESULTS: Using data from the validation study to classify responses, we studied 53 Drosophila orthologues of genes implicated by human GWAS in body mass index and found that 15 significantly influenced feeding behaviour or energy homeostasis in the Drosophila screen. We then studied 50 Drosophila homologues of 47 murine genes reciprocally nutritionally regulated in POMC and agouti-related peptide neurons. Seven of these 50 genes were found by our screen to influence feeding behaviour in flies. CONCLUSION: We demonstrated the utility of Drosophila as a tractable model organism in a high-throughput genetic screen for food intake phenotypes. This simple, cost-efficient strategy is ideal for high-throughput interrogation of genes implicated in feeding behaviour and obesity in mammals and will facilitate the process of reaching a functional understanding of obesity pathogenesis.


Asunto(s)
Apetito/genética , Apetito/fisiología , Conducta Alimentaria/fisiología , Animales , Índice de Masa Corporal , Encéfalo , Drosophila melanogaster/genética , Metabolismo Energético , Estudio de Asociación del Genoma Completo , Genotipo , Homeostasis , Hipotálamo/metabolismo , Neuronas/metabolismo , Estado Nutricional , Obesidad/metabolismo , Fenotipo
2.
Genes Dev ; 15(22): 2967-79, 2001 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11711432

RESUMEN

Amphiphysins 1 and 2 are enriched in the mammalian brain and are proposed to recruit dynamin to sites of endocytosis. Shorter amphiphysin 2 splice variants are also found ubiquitously, with an enrichment in skeletal muscle. At the Drosophila larval neuromuscular junction, amphiphysin is localized postsynaptically and amphiphysin mutants have no major defects in neurotransmission; they are also viable, but flightless. Like mammalian amphiphysin 2 in muscles, Drosophila amphiphysin does not bind clathrin, but can tubulate lipids and is localized on T-tubules. Amphiphysin mutants have a novel phenotype, a severely disorganized T-tubule/sarcoplasmic reticulum system. We therefore propose that muscle amphiphysin is not involved in clathrin-mediated endocytosis, but in the structural organization of the membrane-bound compartments of the excitation-contraction coupling machinery of muscles.


Asunto(s)
Drosophila/metabolismo , Endocitosis , Músculos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Animales , Encéfalo/metabolismo , Calcio/farmacología , Clatrina/metabolismo , ADN Complementario/metabolismo , Electrofisiología , Glutatión Transferasa/metabolismo , Inmunohistoquímica , Microscopía Confocal , Microscopía Fluorescente , Modelos Genéticos , Músculo Esquelético/metabolismo , Mutación , Unión Neuromuscular , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Retículo Sarcoplasmático , Distribución Tisular , Tubulina (Proteína)/metabolismo
3.
Neuron ; 15(3): 663-73, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7546745

RESUMEN

In synaptic transmission, vesicles are proposed to dock at presynaptic active zones by the association of synaptobrevin (v-SNARE) with syntaxin (t-SNARE). We test this hypothesis in Drosophila strains lacking neural synaptobrevin (n-synaptobrevin) or syntaxin. We showed previously that loss of either protein completely blocks synaptic transmission. Here, we attempt to establish the level of this blockade. Ultrastructurally, vesicles are still targeted to the presynaptic membrane and dock normally at specialized release sites. These vesicles are mature and functional since spontaneous vesicle fusion persists in the absence of n-synaptobrevin and since vesicle fusion is triggered by hyperosmotic saline in the absence of syntaxin. We conclude that the SNARE hypothesis cannot fully explain the role of these proteins in synaptic transmission. Instead, both proteins play distinct roles downstream of docking.


Asunto(s)
Drosophila/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Araña Viuda Negra , Calcio/farmacología , Drosophila/embriología , Drosophila/genética , Fusión de Membrana/fisiología , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Qa-SNARE , Proteínas R-SNARE , Venenos de Araña/farmacología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA