Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567980

RESUMEN

Influenza A viruses (IAVs) remain a significant public health threat, causing more than 300,000 hospitalizations in the United States during the 2015-2016 season alone. While only a few IAVs of avian origin have been associated with human infections, the ability of these viruses to cause zoonotic infections further increases the public health risk of influenza. Of these, H9N2 viruses in Asia are of particular importance as they have contributed internal gene segments to other emerging zoonotic IAVs. Notably, recent H9N2 viruses have acquired molecular markers that allow for a transition from avian-like to human-like terminal sialic acid (SA) receptor recognition via a single amino acid change at position 226 (H3 numbering), from glutamine (Q226) to leucine (L226), within the hemagglutinin (HA) receptor-binding site (RBS). We sought to determine the plasticity of amino acid 226 and the biological effects of alternative amino acids on variant viruses. We created a library of viruses with the potential of having any of the 20 amino acids at position 226 on a prototypic H9 HA subtype IAV. We isolated H9 viruses that carried naturally occurring amino acids, variants found in other subtypes, and variants not found in any subtype at position 226. Fitness studies in quails revealed that some natural amino acids conferred an in vivo replication advantage. This study shows the flexibility of position 226 of the HA of H9 influenza viruses and the resulting effect of single amino acid changes on the phenotype of variants in vivo and in vitroIMPORTANCE A single amino acid change at position 226 in the hemagglutinin (HA) from glutamine (Q) to leucine (L) has been shown to play a key role in receptor specificity switching in various influenza virus HA subtypes, including H9. We tested the flexibility of amino acid usage and determined the effects of such changes. The results reveal that amino acids other than L226 and Q226 are well tolerated and that some amino acids allow for the recognition of both avian and human influenza virus receptors in the absence of other changes. Our results can inform better avian influenza virus surveillance efforts as well as contribute to rational vaccine design and improve structural molecular dynamics algorithms.


Asunto(s)
Aminoácidos/genética , Sitios de Unión/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Tropismo/fisiología , Replicación Viral/genética , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Línea Celular Tumoral , Pollos , Perros , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza/genética , Gripe Aviar/virología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Unión Proteica/genética , Codorniz/virología , Receptores de Superficie Celular/genética
2.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28381580

RESUMEN

Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines.IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative strategy, the incorporation of 2 amino acid mutations and a modified HA tag at the C terminus of PB1, which is sufficient to attenuate the IBV. As a LAIV, this novel vaccine provides complete protection against IBV strains. The availability of attenuated IAV and IBV backbones based on contemporary strains offers alternative platforms for the development of LAIVs that may overcome current limitations.


Asunto(s)
Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Aminoácidos/genética , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Genoma Viral , Humanos , Inmunidad Humoral , Virus de la Influenza B/enzimología , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Pulmón/patología , Pulmón/virología , Ratones , Mutación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Linfocitos T/inmunología , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología
3.
Virus Res ; 189: 14-23, 2014 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24833536

RESUMEN

Rearrangement of the influenza A genome such that NS2 is expressed downstream of PB1 permits the insertion of a foreign gene in the NS gene segment. In this report, the genome rearranged strategy was extended to A/California/04/2009 (pH1N1), and Gaussia luciferase (GLuc) or GFP was expressed downstream of the full-length NS1 gene (designated GLucCa04 and GFPCa04, respectively). In growth kinetics studies, culture of amantadine sensitive GLucCa04 (Sens/GlucCa04) in the presence of amantadine significantly decreased GLuc expression and viral titers for 48 h post-infection (hpi). When Sens/GlucCa04 was subsequently used in an in vitro anti-viral screening assay, amantadine treatment significantly decreased GLuc expression from amantadine sensitive compared to amantadine resistant GLucCa04 (Res/GlucCa04) as early as 16 hpi. In in vivo screening studies, DBA mice were treated daily with amantadine from 1 day prior to infection and inoculated with either Sens/GlucCa04 or Res/GlucCa04 alone or as a co-infection with the parental strain. On days 3 and 5 post-infection, lung samples were collected and amantadine treatment was shown to decrease GLuc expression by two orders of magnitude (p<0.05) in Sens/GlucCa04 infected mice. Furthermore, while both Sens and Res/GlucCa04 were highly attenuated, addition of the parental strain to the inoculum yielded clinical disease indicative of GLuc expression and pulmonary viral titers. These findings indicate that the use of GLucCa04 can potentially accelerate in vitro and in vivo anti-viral screening by shortening the time required for virus detection.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Expresión Génica , Genes Reporteros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Luciferasas/análisis , Amantadina/administración & dosificación , Amantadina/farmacología , Animales , Antivirales/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Subtipo H1N1 del Virus de la Influenza A/genética , Luciferasas/genética , Ratones Endogámicos DBA , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA