Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 148(3): 525-531, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36601715

RESUMEN

Panax ginseng and Panax quinquefolius have different medicinal properties and market values; however, they can be difficult to distinguish from one another based on physical appearances alone. Therefore, a molecular test that can be performed in commercial settings is needed to overcome this difficulty. A locus that contains a single nucleotide polymorphism (SNP) site to differentiate between P. ginseng and P. quinquefolius has been selected. An isothermal nucleic acid amplification test (NAAT) has been developed for use in a microfluidic chip; this NAAT method, which is based on lesion-induced DNA amplification (LIDA), amplifies the extracted plant genomic samples and enhances the detection of specific SNPs. This NAAT method was used to authenticate five ginseng root samples which indicated that two of the five samples appear to be mislabeled. These authentication results were consistent with those obtained from next generation sequencing (NGS) although this molecular test is more affordable and faster than NGS.


Asunto(s)
Panax , Reacción en Cadena de la Polimerasa/métodos , Panax/genética , Microfluídica , ADN de Plantas/genética , Técnicas de Amplificación de Ácido Nucleico
2.
Anal Bioanal Chem ; 414(13): 3987-3998, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35385984

RESUMEN

Panax ginseng and Panax quinquefolius, which are commonly called Chinese ginseng and American ginseng respectively, have different medicinal properties and market values; however, these samples can be difficult to differentiate from one another based on physical appearances of the samples especially when they are in powdery or granular forms. A molecular technique is thus needed to overcome this difficulty; this technique is based on the nucleic acid test (NAT) conducted on the microfluidic chip surface. Three single nucleotide polymorphism (SNP) sites (i.e. N1, N2, N3) on the Panax genome that differ between P. ginseng (G) and P. quinquefolius (Q) have been selected to design probes for the NAT. Primers were designed to amplify the antisense strands by asymmetric PCR. We have developed three different NAT methodologies involving surface immobilization and subsequent (stop flow or dynamic) hybridization of probes (i.e. N1G, N1Q, N2G, N2Q, N3Q) to the antisense strands. These NAT methods consist of two steps, namely immobilization and hybridization, and each method is distinguished by what is immobilized on the microfluidic chip surface in the first step (i.e. probe, target or capture strand). These three NATs developed are called probe-target method 1, target-probe method 2 and three-strand complex method 3. Out of the three methods, it was found that the capture strand-target-probe method 3 provided the best differentiation of the ginseng species, in which a 3' NH2 capture strand is first immobilized and the antisense PCR strand is then bound, while N2G and N3Q probes are used for detection of P. ginseng (G) and P. quinquefolius (Q) respectively.


Asunto(s)
Ácidos Nucleicos , Panax , Cartilla de ADN , Panax/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA