Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 583(7817): 620-624, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669709

RESUMEN

Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/tratamiento farmacológico , Dietoterapia/métodos , Ayuno/fisiología , Fulvestrant/uso terapéutico , Animales , Factores Biológicos/sangre , Neoplasias de la Mama/patología , Dieta Saludable/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Fulvestrant/administración & dosificación , Humanos , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Fosfohidrolasa PTEN/metabolismo , Piperazinas/administración & dosificación , Piperazinas/uso terapéutico , Piridinas/administración & dosificación , Piridinas/uso terapéutico , Receptores de Estrógenos , Receptores de Progesterona , Tamoxifeno/efectos adversos , Tamoxifeno/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Oxid Med Cell Longev ; 2019: 9874159, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565158

RESUMEN

Alzheimer's disease (AD) is a disease caused by the complex interaction of multiple mechanisms, some of which are still not fully understood. To date, pharmacological treatments and supplementation of individual nutrients have been poorly effective in terms of the prevention and treatment of AD, while alternative strategies based on multimodal approaches (diet, exercise, and cognitive training) seem to be more promising. In this context, the focus on dietary patterns rather than on single food components could be more useful in preventing or counteracting the pathological processes typical of AD, thanks to the potential synergistic effects of various nutrients (neuronutrients). The aim of this narrative review is to summarize the currently existing preclinical and clinical evidence regarding the Mediterranean diet (MeDi), the Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, which are three dietary patterns with well-known anti-inflammatory and antioxidant properties. Recently, they have been related to brain protection and AD prevention, perhaps thanks to their high content of neuroprotective bioactive compounds. Similarly, intermittent fasting (IF) or calorie restriction (CR) is emerging as interesting approaches that seem to promote hippocampal neurogenesis, activate adaptive stress response systems, and enhance neuronal plasticity, thus leading to motor and cognitive improvements in animal models of AD and hopefully also in human beings.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Dieta Mediterránea , Nutrientes/uso terapéutico , Humanos , Nutrientes/farmacología
3.
Biomed Mater Eng ; 29(3): 347-356, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29578463

RESUMEN

BACKGROUND: Novel pectin-honey hydrogels have been developed and characterized as medical device. Ideally, a wound dressing should maintain optimal fluid affinity, permit moisture evaporation, protect the wound from microbes, and have shape-conformability, biocompatibility, and antibacterial activity. OBJECTIVE: A novel, simple and fast method to produce pectin-honey wound dressings is described. METHODS: The properties of these pectin-honey hydrogels were investigated, including swelling ability, water vapour transmission rate, hydrogen peroxide production, methylglyoxal content and antibacterial activity. Biocompatibility was assessed by proliferation assays using cultured fibroblast cells and by in vivo study with subcutaneous and intraperitoneal implantation in rats. RESULTS: Hydrogel showed a good water vapour transmission rate, fluid uptake and were not cytotoxic for fibroblasts. The hydrogel demonstrated good antibacterial activity toward clinically relevant pathogens, including S. aureus and E. coli. Biocompatibility was confirmed by the measurement of plasma levels of interleukin (IL)1 beta, IL-6, tumour necrosis factor (TNF) alpha, and prostaglandin (PG)E2. No histological changes were observed. CONCLUSIONS: The presence of a natural active component, conformability, and complete resorbability are the main characteristics of this new biocompatible biomaterial that is well tolerated by the body, possibly improves healing, may be used for surgical complications prevention, with a simple and inexpensive production process.


Asunto(s)
Antibacterianos/farmacología , Vendajes , Materiales Biocompatibles/farmacología , Miel , Hidrogeles/farmacología , Pectinas/farmacología , Animales , Antibacterianos/química , Materiales Biocompatibles/química , Línea Celular , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Miel/análisis , Hidrogeles/química , Masculino , Ensayo de Materiales , Ratones , Pectinas/química , Ratas Sprague-Dawley , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
4.
Biochim Biophys Acta ; 1741(1-2): 48-54, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15921899

RESUMEN

Rats were rendered diabetic with streptozotocin and supplemented or not with N-acetylcysteine (NAC) and taurine (TAU). The liver was examined for the quantity of glutathione (GSH), both total and oxidised (GSSG), by HPLC assay. Moreover, the liver expression of gamma-glutamyl-cysteine synthetase, cysteine dioxygenase and heme oxygenase 1 was evaluated. Streptozotocin-diabetic rats showed decreased levels of liver glutathione (GSH); dietary supplementation with the antioxidants NAC and TAU failed to restore liver GSH to the level of control rats. Gamma-glutamyl-cysteine synthetase expression was not reduced in the diabetic rats, so the low hepatic GSH level in the supplemented diabetic rats cannot be ascribed to decreased expression of the biosynthetic key enzyme. Moreover, the diabetic rats showed no evidence of increased expression of cysteine dioxygenase, which could have indicated that NAC-derived cysteine was consumed in metabolic pathways different from GSH synthesis. However, NAC+TAU treatment provided partial protection from glutathione oxidation in the liver of diabetic rats; moreover, the antioxidant treatment reduced the hepatic overexpression of heme oxygenase 1 (HO-1) mRNA which was detected in the diabetic rats. In conclusion, although NAC was not able to restore liver GSH levels, the antioxidant treatment restrained GSH oxidation and HO-1 overexpression, which are markers of cellular oxidative stress: diabetic rats probably exploit NAC as an antioxidant itself rather than as a GSH precursor.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Diabetes Mellitus Experimental/metabolismo , Glutatión/metabolismo , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Taurina/farmacología , Animales , Dioxigenasas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
5.
Diabetes ; 52(2): 499-505, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12540627

RESUMEN

This study analyzes the effect of chronic treatment with different antioxidants (N-acetyl-cysteine [NAC], taurine, a combination of NAC and taurine, and oxerutin) on long-term experimental diabetes induced by streptozotocin in rats. Glycoxidative damage was evaluated in the skin; glomerular structural changes were studied with morphometry and immunohistochemistry. Oxerutin treatment and the combined NAC plus taurine treatment resulted in reduced accumulation of collagen-linked fluorescence in skin in comparison with untreated diabetic rats. All treatments except taurine reduced glomerular accumulation of N(epsilon)-(carboxymethyl)lysine and protected against the increase in glomerular volume typical of diabetes; furthermore, the apoptosis rate was significantly decreased and the glomerular cell density was better preserved. Glycoxidative markers in the skin turned out to be good indicators of the glomerular condition. The findings that emerged from our study support the hypothesis that glomerular damage in diabetes can be prevented or at least attenuated by supplementation with specific antioxidants. Treatment with oxerutin and combined treatment with NAC plus taurine gave the most encouraging results, whereas the results of taurine-only treatment were either negligible or negative and therefore suggest caution in the use of this molecule in single-drug treatment courses.


Asunto(s)
Acetilcisteína/farmacología , Diabetes Mellitus Experimental/patología , Hidroxietilrutósido/análogos & derivados , Hidroxietilrutósido/farmacología , Riñón/patología , Piel/patología , Taurina/farmacología , Animales , Anticoagulantes/farmacología , Glucemia/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/sangre , Angiopatías Diabéticas/patología , Riñón/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Piel/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA