Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 17804, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082411

RESUMEN

Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40-100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5-6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.


Asunto(s)
Agricultura/métodos , Fabaceae/fisiología , Fertilización , Fósforo , Poaceae/fisiología , Producción de Cultivos , Fertilizantes , Humanos , Suelo/química , Clima Tropical
2.
Environ Sci Technol ; 54(19): 11894-11904, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32846091

RESUMEN

China's fertilization practices contribute greatly to the global biogeochemical nitrogen (N) and phosphorus (P) flows, which have exceeded the safe-operating space. Here, we quantified the potentials of improved nutrient management in the food chain and spatial planning of livestock farms on nutrient use efficiency and losses in China, using a nutrient flow model and detailed information on >2300 counties. Annual fertilizer use could be reduced by 26 Tg N and 6.4 Tg P following improved nutrient management. This reduction N and P fertilizer use would contribute 30% and 80% of the required global reduction, needed to keep the biogeochemical N and P flows within the planetary boundary. However, there are various barriers to make this happen. A major barrier is the transportation cost due to the uneven distributions of crop land, livestock, and people within the country. The amounts of N and P in wastes and residues are larger than the N and P demand of the crops grown in 30% and 50% of the counties, respectively. We argue that a drastic increase in the recycling and utilization of N and P from wastes and residues can only happen following relocation of livestock farms to areas with sufficient cropland.


Asunto(s)
Nitrógeno , Fósforo , Agricultura , Animales , China , Fertilizantes , Humanos , Fósforo/análisis
3.
Environ Sci Technol ; 53(3): 1385-1393, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30609901

RESUMEN

Developing sustainable food systems is essential, especially for emerging economies, where food systems are changing rapidly and affect the environment and natural resources. We explored possible future pathways for a sustainable food system in China, using multiple environmental indicators linked to eight of the Sustainable Development Goals (SDGs). Forecasts for 2030 in a business as usual scenario (BAU) indicate increases in animal food consumption as well as increased shortages of the land available and the water needed to produce the required food in China. Associated greenhouse gas emissions and nitrogen and phosphorus losses could become 10-42% of global emissions in 2010. We developed three main pathways besides BAU [produce more and better food (PMB), consume and waste less food (CWL), and import more food (IMF)] and analyzed their impacts and contributions to achieving one or more of the eight SDGs. Under these scenarios, the demand for land and water and the emissions of GHG and nutrients may decrease by 7-55% compared to BAU, depending on the pathway followed. A combination of PMB and CWL was most effective, while IMF externalizes impacts to countries exporting to China. Modestly increasing feed or food imports in a selective manner could ease the pressure on natural resources. Our modeling framework allows us to analyze the effects of changes in food production-consumption systems in an integrated manner, and the results can be linked to the eight SDGs. Despite formidable technological, social, educational, and structural barriers that need to be overcome, our study indicates that the ambitious targets of China's new agricultural and environmental strategy appear to be achievable.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Animales , China , Nitrógeno , Fósforo
4.
Sci Adv ; 4(7): eaar8534, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30035221

RESUMEN

China's livestock industry has experienced a vast transition during the last three decades, with profound effects on domestic and global food provision, resource use, nitrogen and phosphorus losses, and greenhouse gas (GHG) emissions. We provide a comprehensive analysis of the driving forces around this transition and its national and global consequences. The number of livestock units (LUs) tripled in China in less than 30 years, mainly through the growth of landless industrial livestock production systems and the increase in monogastric livestock (from 62 to 74% of total LUs). Changes were fueled through increases in demand as well as, supply of new breeds, new technology, and government support. Production of animal source protein increased 4.9 times, nitrogen use efficiency at herd level tripled, and average feed use and GHG emissions per gram protein produced decreased by a factor of 2 between 1980 and 2010. In the same period, animal feed imports have increased 49 times, total ammonia and GHG emissions to the atmosphere doubled, and nitrogen losses to watercourses tripled. As a consequence, China's livestock transition has significant global impact. Forecasts for 2050, using the Shared Socio-economic Pathways scenarios, indicate major further changes in livestock production and impacts. On the basis of these possible trajectories, we suggest an alternative transition, which should be implemented by government, processing industries, consumers, and retailers. This new transition is targeted to increase production efficiency and environmental performance at system level, with coupling of crop-livestock production, whole chain manure management, and spatial planning as major components.


Asunto(s)
Ganado/fisiología , Animales , China , Abastecimiento de Alimentos , Efecto Invernadero , Gases de Efecto Invernadero/metabolismo , Industrias , Nitrógeno/metabolismo , Fósforo/metabolismo , Densidad de Población
5.
Environ Sci Technol ; 51(1): 375-383, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27997150

RESUMEN

Animal manure contributes considerably to ammonia (NH3) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH3, nitrous oxide (N2O) and methane (CH4) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model. Effects of implementing 12 treatment technologies on emissions and nutrient recovery were further explored through scenario analyses; the level of implementation corresponded to levels currently achieved by forerunner countries. Manure treatment decreased GHG emissions from manures in EU countries by 0-17% in 2010, with the largest contribution from anaerobic digestion; the effects on NH3 emissions were small. Scenario analyses indicate that increased use of slurry acidification, thermal drying, incineration and pyrolysis may decrease NH3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased NH3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by acidification, but would decrease to 48% by incineration. Promoting optimized manure treatment technologies can greatly contribute to achieving NH3 and GHG emission targets set in EU environmental policies.


Asunto(s)
Estiércol , Óxido Nitroso , Amoníaco , Animales , Fertilizantes , Efecto Invernadero , Metano
6.
Environ Sci Technol ; 50(24): 13409-13418, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993054

RESUMEN

The largest livestock production and greatest fertilizer use in the world occurs in China. However, quantification of the nutrient flows through the manure management chain and their interactions with management-related measures is lacking. Herein, we present a detailed analysis of the nutrient flows and losses in the "feed intake-excretion-housing-storage-treatment-application" manure chain, while considering differences among livestock production systems. We estimated the environmental loss from the manure chain in 2010 to be up to 78% of the excreted nitrogen and over 50% of the excreted phosphorus and potassium. The greatest losses occurred from housing and storage stages through NH3 emissions (39% of total nitrogen losses) and direct discharge of manure into water bodies or landfill (30-73% of total nutrient losses). There are large differences among animal production systems, where the landless system has the lowest manure recycling. Scenario analyses for the year 2020 suggest that significant reductions of fertilizer use (27-100%) and nutrient losses (27-56%) can be achieved through a combination of prohibiting manure discharge, improving manure collection and storages infrastructures, and improving manure application to cropland. We recommend that current policies and subsidies targeted at the fertilizer industry should shift to reduce the costs of manure storage, transport, and application.


Asunto(s)
Estiércol , Fósforo , Agricultura , Fertilizantes , Nitrógeno , Potasio
7.
Ambio ; 44 Suppl 2: S180-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681976

RESUMEN

Food production in Europe is dependent on imported phosphorus (P) fertilizers, but P use is inefficient and losses to the environment high. Here, we discuss possible solutions by changes in P management. We argue that not only the use of P fertilizers and P additives in feed could be reduced by fine-tuning fertilization and feeding to actual nutrient requirements, but also P from waste has to be completely recovered and recycled in order to close the P balance of Europe regionally and become less dependent on the availability of P-rock reserves. Finally, climate-smart P management measures are needed, to reduce the expected deterioration of surface water quality resulting from climate-change-induced P loss.


Asunto(s)
Fósforo/análisis , Agricultura , Conservación de los Recursos Naturales , Europa (Continente)
8.
Ambio ; 44 Suppl 2: S193-206, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681977

RESUMEN

The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe's dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.


Asunto(s)
Conservación de los Recursos Naturales , Fósforo , Ecosistema , Europa (Continente)
9.
Environ Sci Technol ; 47(13): 7260-8, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23656482

RESUMEN

The nitrogen (N) and phosphorus (P) costs of food production have increased greatly in China during the last 30 years, leading to eutrophication of surface waters, nitrate leaching to groundwater, and greenhouse gas emissions. Here, we present the results of scenario analyses in which possible changes in food production-consumption in China for the year 2030 were explored. Changes in food chain structure, improvements in technology and management, and combinations of these on food supply and environmental quality were analyzed with the NUFER model. In the business as usual scenario, N and P fertilizer consumption in 2030 will be driven by population growth and diet changes and will both increase by 25%. N and P losses will increase by 44 and 73%, respectively, relative to the reference year 2005. Scenarios with increased imports of animal products and feed instead of domestic production, and with changes in the human diet, indicate reductions in fertilizer consumption and N and P losses relative to the business as usual scenario. Implementation of a package of integrated nutrient management measures may roughly nullify the increases in losses in the business as usual scenario and may greatly increase the efficiency of N and P throughout the whole food chain.


Asunto(s)
Fertilizantes/análisis , Abastecimiento de Alimentos , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis , Agricultura , Alimentación Animal , Animales , China , Cadena Alimentaria , Humanos , Carne , Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA