Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genom Data ; 8: 139-45, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27330992

RESUMEN

Lavender oil (LO) is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg) in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO): GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

2.
PLoS One ; 10(7): e0129951, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161641

RESUMEN

The use of lavender oil (LO)--a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate--in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver, respectively. These results are the first such inventory of genes that are affected by lavender essential oil (LO) in an animal model, forming the basis for further in-depth bioinformatics and functional analyses and investigation.


Asunto(s)
Mucosa Intestinal/metabolismo , Hígado/metabolismo , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Bazo/metabolismo , Transcriptoma/efectos de los fármacos , Administración Oral , Animales , ADN/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Genoma/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Lavandula , Masculino , Aceites Volátiles/administración & dosificación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Aceites de Plantas/administración & dosificación , Ratas , Ratas Endogámicas F344
3.
Cerebellum ; 14(2): 86-96, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25315739

RESUMEN

Neurodevelopmental impairment in the serotonergic system may be involved in autism spectrum disorder. Yokukansan is a traditional herbal remedy for restlessness and agitation in children, and mother-infant co-administration (MICA) to both the child and the nursing mother is one of the recommended treatment approaches. Recent studies have revealed the neuropharmacological properties of Yokukansan (YKS), including its 5-HT1A (serotonin) receptor agonistic effects. We investigated the influence of YKS treatment on behavior in a novel environment and on brain monoamine metabolism during the nursing period in an animal model of neurodevelopmental disorders, prenatally BrdU (5-bromo-2'-deoxyuridine)-treated rats (BrdU-rats). YKS treatment did not influence locomotor activity in BrdU-rats but reduced grooming in open-field tests. YKS treatment without MICA disrupted the correlation between locomotor behaviors and rearing and altered levels of serotonin and its metabolite in the cerebellum. These effects were not observed in the group receiving YKS treatment with MICA. These data indicate a direct pharmacological effect of YKS on the development of grooming behavior and profound effects on cerebellar serotonin metabolism, which is thought to be influenced by nursing conditions.


Asunto(s)
Cerebelo/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Aseo Animal/efectos de los fármacos , Hipnóticos y Sedantes/administración & dosificación , Agitación Psicomotora/tratamiento farmacológico , Agonistas de Receptores de Serotonina/administración & dosificación , Serotonina/metabolismo , Animales , Animales Recién Nacidos , Trastorno del Espectro Autista , Bromodesoxiuridina , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Defecación/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Conducta Exploratoria/efectos de los fármacos , Femenino , Lactancia , Masculino , Madres , Actividad Motora/efectos de los fármacos , Agitación Psicomotora/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Micción/efectos de los fármacos
4.
J Toxicol Sci ; 34(3): 315-25, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483385

RESUMEN

Methylmercury (MeHg) is an environmental pollutant known to cause neurobehavioral defects and is especially toxic to the developing brain. With recent studies showing that fetal exposure to low-dose MeHg causes developmental abnormalities, it is therefore important to find ways to combat its effects as well as to clarify the mechanism(s) underlying MeHg toxicity. In the present study, the effects of MeHg on cultured neural progenitor cells (NPC) derived from mouse embryonic brain were investigated. We first confirmed the vulnerability of embryonic NPC to MeHg toxicity, NPC from the telencephalon were more sensitive to MeHg compared to those from the diencephalon. Buthionine sulfoximine (BSO) which is known to inhibit glutathione synthesis accelerated MeHg toxicity. Furthermore, antioxidants such as N-acetyl cysteine and alpha-tocopherol dramatically rescued the NPC from MeHg's toxic effects. Interestingly, a 12 hr delay in the addition of either antioxidant was still able to prevent the cells from undergoing cell death. Although it is now difficult to avoid MeHg exposure from our environment and contaminated foods, taking anti-oxidants from foods or supplements may prevent or diminish the toxicological effects of MeHg.


Asunto(s)
Antioxidantes/farmacología , Contaminantes Ambientales/toxicidad , Compuestos de Metilmercurio/toxicidad , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Butionina Sulfoximina/farmacología , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diencéfalo/efectos de los fármacos , Diencéfalo/embriología , Diencéfalo/patología , Interacciones Farmacológicas , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Ratones , Ratones Endogámicos ICR , Neuronas/metabolismo , Neuronas/patología , Células Madre/metabolismo , Células Madre/patología , Telencéfalo/efectos de los fármacos , Telencéfalo/embriología , Telencéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA