Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 175(4): e13957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338180

RESUMEN

In floral thermogenesis, sugars play an important role not only as energy providers but also as growth and development facilitators. Yet, the mechanisms underlying sugar translocation and transport in thermogenic plants remain to be studied. Asian skunk cabbage (Symplocarpus renifolius) is a species that can produce durable and intense heat in its reproductive organ, the spadix. Significant morphological and developmental changes in the stamen are well-characterized in this plant. In this study, we focused on the sugar transporters (STPs), SrSTP1 and SrSTP14, whose genes were identified by RNA-seq as the upregulated STPs during thermogenesis. Real-time PCR confirmed that mRNA expression of both STP genes was increased from the pre-thermogenic to the thermogenic stage in the spadix, where it is predominantly expressed in the stamen. SrSTP1 and SrSTP14 complemented the growth defects of a hexose transporter-deficient yeast strain, EBY4000, on media containing 0.02, 0.2, and 2% (w/v) glucose and galactose. Using a recently developed transient expression system in skunk cabbage leaf protoplasts, we revealed that SrSTP1 and SrSTP14-GFP fusion proteins were mainly localized to the plasma membrane. To dig further into the functional analysis of SrSTPs, tissue-specific localization of SrSTPs was investigated by in situ hybridization. Using probes for SrSTP14, mRNA expression was observed in the microspores within the developing anther at the thermogenic female stage. These results indicate that SrSTP1 and SrSTP14 transport hexoses (e.g., glucose and galactose) at the plasma membrane and suggest that SrSTP14 may play a role in pollen development through the uptake of hexoses into pollen precursor cells.


Asunto(s)
Araceae , Galactosa/metabolismo , Polen/genética , Polen/metabolismo , Glucosa/metabolismo , Termogénesis , ARN Mensajero/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158811, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896622

RESUMEN

There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4ß-hydroxycholesterol (4ßOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4ßOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4ßOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Hidroxicolesteroles/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Ácidos Cólicos/metabolismo , Ácido Desoxicólico/metabolismo , Disbiosis/etiología , Hidroxilación , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratas , Ratas Wistar , Ácido Taurocólico/metabolismo
3.
Plant Physiol ; 180(2): 743-756, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30918084

RESUMEN

Cone thermogenesis is a widespread phenomenon in cycads and may function to promote volatile emissions that affect pollinator behavior. Given their large population size and intense and durable heat-producing effects, cycads are important organisms for comprehensive studies of plant thermogenesis. However, knowledge of mitochondrial morphology and function in cone thermogenesis is limited. Therefore, we investigated these mitochondrial properties in the thermogenic cycad species Cycas revoluta Male cones generated heat even in cool weather conditions. Female cones produced heat, but to a lesser extent than male cones. Ultrastructural analyses of the two major tissues of male cones, microsporophylls and microsporangia, revealed the existence of a population of mitochondria with a distinct morphology in the microsporophylls. In these cells, we observed large mitochondria (cross-sectional area of 2 µm2 or more) with a uniform matrix density that occupied >10% of the total mitochondrial volume. Despite the size difference, many nonlarge mitochondria (cross-sectional area <2 µm2) also exhibited a shape and a matrix density similar to those of large mitochondria. Alternative oxidase (AOX) capacity and expression levels in microsporophylls were much higher than those in microsporangia. The AOX genes expressed in male cones revealed two different AOX complementary DNA sequences: CrAOX1 and CrAOX2 The expression level of CrAOX1 mRNA in the microsporophylls was 100 times greater than that of CrAOX2 mRNA. Collectively, these results suggest that distinctive mitochondrial morphology and CrAOX1-mediated respiration in microsporophylls might play a role in cycad cone thermogenesis.


Asunto(s)
Cycadopsida/enzimología , Cycadopsida/fisiología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Polen/enzimología , Termogénesis , Respiración de la Célula , Cycadopsida/genética , Cycadopsida/ultraestructura , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Especificidad de Órganos/genética , Polen/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura
4.
PLoS One ; 10(11): e0141658, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26571296

RESUMEN

Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904-1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 µg/ml, 0.5 µg/ml, and 2.0-7.5 µg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904-1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904-1. Our method provides a rapid and convenient screen to identify an anti-mycobacterial drug.


Asunto(s)
Antituberculosos/farmacología , Vacuna BCG/química , Luciferasas/metabolismo , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Actinomyces , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Medios de Cultivo Condicionados , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Humanos , Macrófagos/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Complejo Mycobacterium avium/genética , Oligopéptidos/química , Espectrometría de Masa por Ionización de Electrospray , Streptomyces
5.
Plasmid ; 67(3): 227-35, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22186359

RESUMEN

Bacteriophages are fascinating genetic elements that play key roles in the evolution and diversification of bacterial genomes. Shiga toxin (Stx)-transducing phages are important genetic elements that disseminate the stx genes among enterohemorrhagic Escherichia coli (EHEC). They are generally regarded as lambda-like phages, but their biological and genetic properties have not been fully elucidated. This is partly due to a serious obstacle in obtaining visible plaques. Here, we describe a modified double agar overlay method that allows us to easily detect and accurately enumerate plaques of Sp5, the Stx2 phage of the EHEC O157 Sakai strain, which otherwise does not produce plaques in the standard plating procedure. In the modified method, the top agar was supplemented with mitomycin C (MMC) and Ca(2+) (or Mg(2+)). MMC appears to prevent the lysogenization of Sp5 and/or compel Sp5 to follow the lytic cycle by inducing the SOS response in the host cells. The divalent cations significantly improve phage adsorption to the host cells and thus yield a synergistic effect in combination with MMC. We further applied this method to a receptor analysis of Sp5 and obtained findings that suggest that the YaeT (BamA) protein serves as the receptor of Sp5. This method would be a very useful tool in studies of Stx2 phages and studies of other phages from various bacteria, in which researchers often encounter problems with plaque formation.


Asunto(s)
Colifagos/genética , ADN Bacteriano/genética , Escherichia coli O157/virología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cloruro de Calcio , Clonación Molecular , Colifagos/aislamiento & purificación , Medios de Cultivo Condicionados , ADN Bacteriano/aislamiento & purificación , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cloruro de Magnesio , Mitomicina , Reacción en Cadena de la Polimerasa , Toxina Shiga II/genética , Toxina Shiga II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA