Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Sci Technol ; 59(4): 1317-1325, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35250057

RESUMEN

The purpose of the current study was to examine the effect of adding secondary ingredients such as green tea derived water-soluble polysaccharides (GTP) and flavonol aglycone rich fractions derived from cellulase treated green tea extract (FVN) into catechin rich green tea extracts (GTE) on wheat starch digestion and intestinal glucose transport using in vitro digestion with Caco-2 cells. Co-digestion of wheat starch with GTE (16.88 g L-1) or GTE + GTP + FVN (16.69 g L-1) appeared to promote starch hydrolysis compared to control (15.49 g L-1). In case of major flavonoids, addition of epigallocatechin gallate (EGCG), EGCG + myricetin (M) into wheat starch significantly increased the digestion of starch into glucose. Glucose transport rate decreased by 22.35% in wheat starch + GTE + GTP + FVN (1.39%), while the least amount of glucose (1.70%) was transported in EGCG mixed with M (1% of EGCG) as secondary ingredients among individual flavonoids formulation. It indicated that inhibitory effect on glucose transport was higher in addition of GTE, GTP, and FVN as excipients ingredients rather than targeted major flavonoids. Results from the current study suggest that whole green tea including flavonoid rich fractions could enhance hypoglycemic potential of GTE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05140-2.

2.
J Agric Food Chem ; 69(50): 15208-15217, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881881

RESUMEN

The purpose of the current study was to investigate the effect of various characterized green tea extracts (GTEs) according to extraction methods on enzymatic starch hydrolysis and intestinal glucose transport. Codigestion of wheat starch with water extract (WGT) or ethanol extract formulated with green tea polysaccharides and flavonols (CATEPLUS) produced 3.4-3.5 times higher resistant starch (RS) than wheat starch only. Its microstructures were changed to spherical shapes and smooth surfaces as shown by scanning electron microscopy (SEM) results. According to Fourier transform infrared (FT-IR) spectra, the absorption peak of O-H stretching was red-shifted in WGT or CATEPLUS. The results confirmed that hydrogen bonds were formed between starch granules and polysaccharides in WGT or CATEPLUS. Intestinal glucose transport subsequently measured after in vitro digestion was mostly suppressed in CATEPLUS. Gene expression of the glucose transporter protein, particularly SGLT1, was significantly inhibited by addition of CATEPLUS (p < 0.05). Results from the current study suggest that co-intake of green tea extracts formulated with green tea polysaccharides and flavonols could be a potentially useful means to delay blood glucose absorption when consuming starchy foods.


Asunto(s)
Almidón , , Glucosa , Hidrólisis , Extractos Vegetales , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Agric Food Chem ; 69(47): 14075-14085, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784711

RESUMEN

The purpose of the current study was to investigate the effect of green tea ethanol extract (GTE) and polysaccharide fractions from green tea (PFGs) on the hydrolysis of wheat starch, microstructural changes, and intestinal transport of glucose. The amount of resistant starch (RS) was significantly lowered in the water-soluble polysaccharide (WSP), water-soluble polysaccharide-pectinase (WSP-P), and water-insoluble polysaccharide-alkali soluble (WISP-Alk-Soluble; p < 0.05). The microstructures of gelatinized wheat starch granules with WSP, WSP-P, and WISP-Alk-Soluble were spherical with small cracks. The amount of intestinal transported glucose from digested wheat starch was 2.12-3.50 times lower than the control group. The results from the current study suggest that water- and alkali-soluble PFGs could be potential ingredients to lower starch hydrolysis as well as to control the postprandial blood glucose level when foods that contain starch are consumed.


Asunto(s)
Almidón , , Glucosa , Hidrólisis , Polisacáridos , Triticum
4.
Food Funct ; 12(22): 11399-11407, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673869

RESUMEN

To maximize the biological activity of branched-chain amino acids (BCAAs), it is necessary to find a new excipient agent to increase the bioavailability of BCAAs in protein mixtures. The aim of the current study was to investigate the effects of soy lecithin (SLC), zinc oxide (ZnO), and methylsulfonylmethane (MSM) on the bioaccessibility and intestinal transport of BCAAs from animal and plant protein mixtures (PMs) via an in vitro digestion model with human intestinal epithelial (Caco-2) cells. The bioaccessibility of total BCAAs in PMs considerably increased by 107.51 ± 1.50% with the addition of SLC, and the combined effects of SLC, ZnO, and MSM on enhancing the bioaccessibility of total BCAAs was observed (107.14 ± 0.18%). Interestingly, SLC showed a major role in binding bile acid, showing 65.78 ± 1.66% of binding capacity. Intestinal transport of BCAAs was measured to be at 100.48, 110.86, and 130.29 µg mL-1 for leucine, isoleucine, and valine, respectively, in PMs with SLC + ZnO + MSM, and it eventually amplified the amount of the total transported BCAAs (341.63 ± 6.34 µg mL-1), which was about 8.72 times higher than that of PM only. The cellular integrity of digesta-treated Caco-2 cells tended to decrease according to the incubation time, but it was recovered in the treatment of PM + SLC + ZnO + MSM, and nearly reached the control levels with 92.82 ± 0.53%. Results from the current study suggest that the co-consumption of proteins equally consisting of plant and animal sources with SLC, ZnO, and MSM could improve the bioavailability of total BCAAs, resulting in the improvement of health benefits.


Asunto(s)
Aminoácidos de Cadena Ramificada , Dimetilsulfóxido/química , Excipientes/química , Proteínas de Plantas , Sulfonas/química , Óxido de Zinc/química , Aminoácidos de Cadena Ramificada/química , Aminoácidos de Cadena Ramificada/farmacocinética , Animales , Disponibilidad Biológica , Células CACO-2 , Humanos , Lecitinas/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacocinética
5.
Molecules ; 26(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802142

RESUMEN

The aim of this study was to profile the bioaccessibility and intestinal absorption of epicatechins and flavonols in different forms of green tea and its formulation: loose leaf tea, powdered tea, 35% catechins containing GTE, and GTE formulated with green tea-derived polysaccharide and flavonols (CATEPLUS™). The bioaccessibillity and intestinal absorption of epicatechins and flavonols was investigated by using an in vitro digestion model system with Caco-2 cells. The bioaccessibility of total epicatechins in loose leaf tea, powdered tea, GTE, and CATEPLUS™ was 1.27%, 2.30%, 22.05%, and 18.72%, respectively, showing that GTE and CATEPLUS™ had significantly higher bioaccessibility than powdered tea and loose leaf tea. None of the flavonols were detected in powdered tea and loose leaf tea, but the bioaccessibility of the total flavonols in GTE and CATEPLUS™ was 85.74% and 66.98%, respectively. The highest intestinal absorption of epicatechins was found in CATEPLUS™ (171.39 ± 5.39 ng/mg protein) followed by GTE (57.38 ± 9.31), powdered tea (3.60 ± 0.67), and loose leaf tea (2.94 ± 1.03). The results from the study suggest that formulating green tea extracts rich in catechins with second components obtained from green tea processing could enhance the bioavailability of epicatechins.


Asunto(s)
Flavonoides/farmacología , Té/metabolismo , Antioxidantes , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Catequina/química , Catequina/metabolismo , Digestión/efectos de los fármacos , Digestión/fisiología , Flavonoides/metabolismo , Flavonoles/química , Flavonoles/metabolismo , Humanos , Intestinos/efectos de los fármacos , Intestinos/fisiología , Modelos Biológicos , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA