Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 25(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036475

RESUMEN

Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be applied to pregnant women. Objective: The objectives of the study were to investigate a natural product, Abeliophyllum distichum leaf (ADL) extract, to examine the possibility of preventing preterm birth caused by inflammation. Methods: We used a mouse preterm birth model by intraperitoneally injecting lipopolysaccharides (LPS). ELISA, Western blot, real-time PCR and immunofluorescence staining analyses were performed to confirm the anti-inflammatory efficacy and related mechanisms of the ADL extracts. Cytotoxicity and cell death were measured using Cell Counting Kit-8 (CCK-8) analysis and flow cytometer. Results: A daily administration of ADL extract significantly reduced preterm birth, fetal loss, and fetal growth restriction after an intraperitoneal injection of LPS in mice. The ADL extract prevented the LPS-induced expression of TNF-α in maternal serum and amniotic fluid and attenuated the LPS-induced upregulation of placental proinflammatory genes, including IL-1ß, IL-6, IL-12p40, and TNF-α and the chemokine gene CXCL-1, CCL-2, CCL3, and CCL-4. LPS-treated THP-1 cell-conditioned medium accelerated trophoblast cell death, and TNF-α played an essential role in this effect. The ADL extract reduced LPS-treated THP-1 cell-conditioned medium-induced trophoblast cell death by inhibiting MAPKs and the NF-κB pathway in macrophages. ADL extract prevented exogenous TNF-α-induced increased trophoblast cell death and decreased cell viability. Conclusions: We have demonstrated that the inhibition of LPS-induced inflammation by ADL extract can prevent preterm birth, fetal loss, and fetal growth restriction.


Asunto(s)
Glucósidos/química , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Oleaceae/química , Fenoles/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/prevención & control , Factor de Necrosis Tumoral alfa/farmacología , Animales , Muerte Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Femenino , Masculino , Ratones , Trofoblastos/citología , Trofoblastos/metabolismo
2.
Oxid Med Cell Longev ; 2020: 7829842, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685100

RESUMEN

Tau, a microtubule-associated protein expressed in mature neurons, interacts with tubulin to promote the assembly and stabilization of microtubules. However, abnormally hyperphosphorylated tau dissociates from microtubules and self-aggregates. Tau aggregates, including paired helical filaments and neurofibrillary tangles, promote neuronal dysfunction and death and are the defining neuropathological feature of tauopathies. Therefore, suppressing tau aggregation or stimulating the dissociation of tau aggregates has been proposed as an effective strategy for treating neurodegenerative diseases associated with tau pathology such as Alzheimer's disease (AD) and frontotemporal dementia. Interestingly, ginsenosides extracted from Panax ginseng reduced the hippocampal and cortical expression of phosphorylated tau in a rat model of AD. However, no studies have been conducted into the effect of red ginseng (RG) and its components on tau pathology. Here, we evaluated the effect of Korean red ginseng extract (KRGE) and its components on the aggregation and disassociation of tau. Using the thioflavin T assay, we monitored the change in fluorescence produced by the aggregation or disassociation of tau K18, an aggregation-prone fragment of tau441 containing the microtubule-binding domain. Our analysis revealed that KRGE not only inhibited tau aggregation but also promoted the dissociation of tau aggregates. In addition, the KRGE fractions, such as saponin, nonsaponin, and nonsaponin fraction with rich polysaccharide, also inhibited tau aggregation and promoted the dissociation of tau aggregates. Our observations suggest that RG could be a potential therapeutic agent for the treatment of neurodegenerative diseases associated with tauopathy.


Asunto(s)
Panax/química , Proteínas tau/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Humanos , Ratas
3.
J Pharm Pharmacol ; 62(2): 263-71, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20487207

RESUMEN

OBJECTIVES: The ameliorating effects of wild ginseng on learning and memory deficits were investigated in rats. METHODS: Rats were treated daily with wild ginseng or cultivated ginseng for 7 days at 30 min before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment by the administration of scopolamine, behavioural assessment using the Morris water maze was performed. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase and the reactivity of acetylcholinesterase in the hippocampus. KEY FINDINGS: Scopolamine injection induced impaired performance in the water maze test and severe cell losses in hippocampal cholinergic neurons, as indicated by decreased choline acetyltransferase immunoreactivity and increased acetylcholinesterase reactivity. Daily administration of wild ginseng produced a significant improvement in the escape latency for finding the platform in the Morris water maze and reduced the loss of cholinergic immunoreactivity in the hippocampus. The reduced expression of brain-derived neurotrophic factor mRNA due to the scopolamine injection was recovered to normal levels by the administration of wild ginseng. CONCLUSIONS: Wild ginseng demonstrates a significant neuroprotective effect against scopolamine-induced neuronal and cognitive impairment.


Asunto(s)
Acetilcolina/antagonistas & inhibidores , Antagonistas Colinérgicos/toxicidad , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Panax/química , Extractos Vegetales/farmacología , Escopolamina/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/patología , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Panax/crecimiento & desarrollo , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA