Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 126(6): 767-783, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32078435

RESUMEN

RATIONALE: Central nervous system has low vascular permeability by organizing tight junction (TJ) and limiting endothelial transcytosis. While TJ has long been considered to be responsible for vascular barrier in central nervous system, suppressed transcytosis in endothelial cells is now emerging as a complementary mechanism. Whether transcytosis regulation is independent of TJ and its dysregulation dominantly causes diseases associated with edema remain elusive. Dll4 signaling is important for various vascular contexts, but its role in the maintenance of vascular barrier in central nervous system remains unknown. OBJECTIVE: To find a TJ-independent regulatory mechanism selective for transcytosis and identify its dysregulation as a cause of pathological leakage. METHODS AND RESULTS: We studied transcytosis in the adult mouse retina with low vascular permeability and employed a hypertension-induced retinal edema model for its pathological implication. Both antibody-based and genetic inactivation of Dll4 or Notch1 induce hyperpermeability by increasing transcytosis without junctional destabilization in arterial endothelial cells, leading to nonhemorrhagic leakage predominantly in the superficial retinal layer. Endothelial Sox17 deletion represses Dll4 in retinal arteries, phenocopying Dll4 blocking-driven vascular leakage. Ang II (angiotensin II)-induced hypertension represses arterial Sox17 and Dll4, followed by transcytosis-driven retinal edema, which is rescued by a gain of Notch activity. Transcriptomic profiling of retinal endothelial cells suggests that Dll4 blocking activates SREBP1 (sterol regulatory element-binding protein 1)-mediated lipogenic transcription and enriches gene sets favorable for caveolae formation. Profiling also predicts the activation of VEGF (vascular endothelial growth factor) signaling by Dll4 blockade. Inhibition of SREBP1 or VEGF-VEGFR2 (VEGF receptor 2) signaling attenuates both Dll4 blockade-driven and hypertension-induced retinal leakage. CONCLUSIONS: In the retina, Sox17-Dll4-SREBP1 signaling axis controls transcytosis independently of TJ in superficial arteries among heterogeneous regulations for the whole vessels. Uncontrolled transcytosis via dysregulated Dll4 underlies pathological leakage in hypertensive retina and could be a therapeutic target for treating hypertension-associated retinal edema.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Barrera Hematorretinal/metabolismo , Proteínas de Unión al Calcio/metabolismo , Retinopatía Hipertensiva/metabolismo , Transcitosis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio/genética , Caveolas/metabolismo , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Uniones Estrechas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
ACS Appl Mater Interfaces ; 10(34): 28450-28457, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30067899

RESUMEN

The introduction of nanoparticle-mediated delivery and therapy has revolutionized cancer treatment approaches. However, there has been limited success in clinical trials because current approaches have not simultaneously satisfied therapeutic efficacy and biosafety criteria to an adequate degree. Here, we employ efficient macrophage-mediated exocytosis of elongated nanoparticles to facilitate their localization in tumor cells for cancer therapy and their transport to hepatocytes for hepatobiliary excretion. In vitro studies show that PEGylated high-aspect ratio gold nanoparticles exit macrophages more rapidly and remain in tumor cells longer, compared with low-aspect ratio and spherical nanoparticles. In tumors, high-aspect ratio nanoparticles tend to stay in tumor cells and escape from tumor-associated macrophages when they are taken up by those cells. In the liver, high-aspect ratio nanoparticles cleared by Kupffer cells mostly take the hepatobiliary excretion pathway through efficient Kupffer cell-hepatocyte transfer. Furthermore, we demonstrate that time-dependent localization of elongated gold nanoparticles toward tumor cells in tumor tissues enhances the overall phototherapeutic outcome. Engineering nanoparticles to modulate their exocytosis provides a new approach to improve cancer nanomedicine and pave the way toward clinical translation.


Asunto(s)
Nanopartículas del Metal , Exocitosis , Oro , Eliminación Hepatobiliar , Macrófagos , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA