Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Comp Neurol ; 531(1): 170-185, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215105

RESUMEN

In the avian ascending auditory pathway, the nucleus mesencephalicus lateralis pars dorsalis (MLd; the auditory midbrain center) receives inputs from virtually all lower brainstem auditory nuclei and sends outputs bilaterally to the nucleus ovoidalis (Ov; the auditory thalamic nucleus). Axons from part of the MLd terminate in a particular domain of Ov, thereby suggesting a formation of segregated pathways point-to-point from lower brainstem nuclei via MLd to the thalamus. However, it has not yet been demonstrated whether any spatial clustering of thalamic neurons that receive inputs from specific domains of MLd exists. Ov neurons receive input from bilateral MLds; however, the degree of laterality has not been reported yet. In this study, we injected a recombinant avian adeno-associated virus, a transsynaptic anterograde vector into the MLd of the chick, and analyzed the distribution of labeled postsynaptic neurons on both sides of the Ov. We found that fluorescent protein-labeled neurons on both sides of the Ov were clustered in domains corresponding to subregions of the MLd. The laterality of projections was calculated as the ratio of neurons labeled by comparing ipsilateral to contralateral projections from the MLd, and it was 1.86 on average, thereby indicating a slight ipsilateral projection dominance. Bilateral inputs from different subdomains of the MLd converged on several single Ov neurons, thereby implying a possibility of a de novo binaural processing of the auditory information in the Ov.


Asunto(s)
Pollos , Mesencéfalo , Animales , Mesencéfalo/metabolismo , Vías Auditivas/fisiología , Tálamo , Neuronas
2.
J Neurophysiol ; 113(10): 3930-42, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25761950

RESUMEN

Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices.


Asunto(s)
Mapeo Encefálico , Encéfalo/citología , Encéfalo/fisiología , Fluorescencia , Neuronas/fisiología , 4-Aminopiridina/farmacología , Estimulación Acústica , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Vías Auditivas/fisiología , Calcio/metabolismo , Pollos , Estimulación Eléctrica , Antagonistas del GABA/farmacología , Técnicas In Vitro , Neuronas/efectos de los fármacos , Fotometría , Bloqueadores de los Canales de Potasio/farmacología , Piridazinas/farmacología , Compuestos de Tetraetilamonio/farmacología , Transfección
3.
J Neurosci ; 30(36): 12075-83, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826670

RESUMEN

GABAergic modulation of activity in avian cochlear nucleus neurons has been studied extensively in vitro. However, how this modulation actually influences processing in vivo is not known. We investigated responses of chicken nucleus magnocellularis (NM) neurons to sound while pharmacologically manipulating the inhibitory input from the superior olivary nucleus (SON). SON receives excitatory inputs from nucleus angularis (NA) and nucleus laminaris (NL), and provides GABAergic inputs to NM, NA, NL, and putatively to the contralateral SON. Results from single-unit extracellular recordings from 2 to 4 weeks posthatch chickens show that firing rates of auditory nerve fibers increased monotonically with sound intensity, while that of NM neurons saturated or even decreased at moderate or loud sound levels. Blocking GABAergic input with local application of TTX into the SON induced an increase in firing rate of ipsilateral NM, while that of the contralateral NM decreased at high sound levels. Moreover, local application of bicuculline to NM also increased the firing rate of NM neurons at high sound levels, reduced phase locking, and broadened the frequency-tuning properties of NM neurons. Following application of DNQX, clear evidence of inhibition was observed. Furthermore, the inhibition was tuned to a broader frequency range than the excitatory response areas. We conclude that GABAergic inhibition from SON has at least three physiological influences on the activity of NM neurons: it regulates the firing activity of NM units in a sound-level-dependent manner; it improves phase selectivity; and it sharpens frequency tuning of NM neuronal responses.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Coclear/citología , Inhibición Neural/fisiología , Neuronas/citología , Ácido gamma-Aminobutírico/metabolismo , Estimulación Acústica/métodos , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Pollos/anatomía & histología , Antagonistas de Aminoácidos Excitadores/farmacología , Lateralidad Funcional , Antagonistas del GABA/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Psicoacústica , Quinoxalinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
4.
J Neurosci ; 28(28): 7153-64, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18614685

RESUMEN

Interaural time difference (ITD) is a major cue for sound source localization. However, animals with small heads experience small ITDs, making ITD detection difficult, particularly for low-frequency sound. Here, we describe a sound-intensity-dependent mechanism for compensating for the small ITD cues in the coincidence detector neurons in the nucleus laminaris (NL) of the chicken aged from 3 to 29 d after hatching. The hypothesized compensation mechanisms were confirmed by simulation. In vivo single-unit recordings revealed an improved contrast of ITD tuning in low-best-frequency (<1 kHz) NL neurons by suppressing the firing activity at the worst ITD, whereas the firing rate was increased with increasing sound intensity at the best ITD. In contrast, level-dependent suppression was so weak in the middle- and high-best-frequency (> or =1 kHz) NL neurons that loud sounds led to increases in firing rate at both the best and the worst ITDs. The suppression of firing activity at the worst ITD in the low-best-frequency neurons required the activation of the superior olivary nucleus (SON) and was eliminated by electrolytic lesions of the SON. The frequency-dependent suppression reflected the dense projection from the SON to the low-frequency region of NL. Thus, the small ITD cues available in low-frequency sounds were partly compensated for by a sound-intensity-dependent inhibition from the SON.


Asunto(s)
Adaptación Fisiológica/fisiología , Señales (Psicología) , Tiempo de Reacción/fisiología , Localización de Sonidos/fisiología , Sonido , Estimulación Acústica/métodos , Potenciales de Acción/fisiología , Factores de Edad , Animales , Vías Auditivas/metabolismo , Vías Auditivas/fisiología , Umbral Auditivo/fisiología , Conducta Animal , Pollos , Simulación por Computador , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Lateralidad Funcional , Inhibición Psicológica , Modelos Biológicos , Proteínas Nucleares/metabolismo , Técnicas de Placa-Clamp/métodos , Psicofísica , Factores de Tiempo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA