Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbes Environ ; 36(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907063

RESUMEN

Clone libraries of bacterial 16S rRNA genes (a total of 1,980 clones) were constructed from the leaf blades, petioles, taproots, and lateral roots of sugar beet (Beta vulgaris L.) grown under different fertilization conditions. A principal coordinate analysis revealed that the structures of bacterial communities in above- and underground tissues were largely separated by PC1 (44.5%). The bacterial communities of above-ground tissues (leaf blades and petioles) were more tightly clustered regardless of differences in the tissue types and fertilization conditions than those of below-ground tissues (taproots and lateral roots). The bacterial communities of below-ground tissues were largely separated by PC2 (26.0%). To survey plant growth-promoting bacteria (PGPBs), isolate collections (a total of 665 isolates) were constructed from the lateral roots. As candidate PGPBs, 44 isolates were selected via clustering analyses with the combined 16S rRNA gene sequence data of clone libraries and isolate collections. The results of inoculation tests using sugar beet seedlings showed that eight isolates exhibited growth-promoting effects on the seedlings. Among them, seven isolates belonging to seven genera (Asticcacaulis, Mesorhizobium, Nocardioides, Sphingobium, Sphingomonas, Sphingopyxis, and Polaromonas) were newly identified as PGPBs for sugar beet at the genus level, and two isolates belonging to two genera (Asticcacaulis and Polaromonas) were revealed to exert growth-promoting effects on the plant at the genus level for the first time. These results suggest that a community analysis-based selection strategy will facilitate the isolation of novel PGPBs and extend the potential for the development of novel biofertilizers.


Asunto(s)
Bacterias/aislamiento & purificación , Beta vulgaris/crecimiento & desarrollo , Microbiota , Bacterias/clasificación , Bacterias/genética , Beta vulgaris/microbiología , ADN Bacteriano/genética , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Plantones/crecimiento & desarrollo , Plantones/microbiología , Microbiología del Suelo
2.
Microbes Environ ; 32(1): 14-23, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28163278

RESUMEN

The compatibility of strains is crucial for formulating bioinoculants that promote plant growth. We herein assessed the compatibility of four potential bioinoculants isolated from potato roots and tubers (Sphingomonas sp. T168, Streptomyces sp. R170, Streptomyces sp. R181, and Methylibium sp. R182) that were co-inoculated in order to improve plant growth. We screened these strains using biochemical tests, and the results obtained showed that R170 had the highest potential as a bioinoculant, as indicated by its significant ability to produce plant growth-promoting substances, its higher tolerance against NaCl (2%) and AlCl3 (0.01%), and growth in a wider range of pH values (5.0-10.0) than the other three strains. Therefore, the compatibility of R170 with other strains was tested in combined inoculations, and the results showed that the co-inoculation of R170 with T168 or R182 synergistically increased plant weight over un-inoculated controls, indicating the compatibility of strains based on the increased production of plant growth promoters such as indole-3-acetic acid (IAA) and siderophores as well as co-localization on roots. However, a parallel test using strain R181, which is the same Streptomyces genus as R170, showed incompatibility with T168 and R182, as revealed by weaker plant growth promotion and a lack of co-localization. Collectively, our results suggest that compatibility among bacterial inoculants is important for efficient plant growth promotion, and that R170 has potential as a useful bioinoculant, particularly in combined inoculations that contain compatible bacteria.


Asunto(s)
Betaproteobacteria/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/microbiología , Sphingomonas/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo , Cloruro de Aluminio , Compuestos de Aluminio/toxicidad , Betaproteobacteria/metabolismo , Cloruros/toxicidad , Concentración de Iones de Hidrógeno , Interacciones Microbianas , Reguladores del Crecimiento de las Plantas/metabolismo , Sideróforos/metabolismo , Cloruro de Sodio/metabolismo , Sphingomonas/metabolismo , Streptomyces/metabolismo
3.
Microbes Environ ; 29(2): 220-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24789987

RESUMEN

The partial sequences of the 16S rRNA genes of 531 bacteria isolated from the main root of the sugar beet (Beta vulgaris L.) were determined and subsequently grouped into 155 operational taxonomic units by clustering analysis (≥99% identity). The most abundant phylum was Proteobacteria (72.5-77.2%), followed by Actinobacteria (9.8-16.6%) and Bacteroidetes (4.3-15.4%). Alphaproteobacteria (46.7-64.8%) was the most dominant class within Proteobacteria. Four strains belonging to Verrucomicrobia were also isolated. Phylogenetic analysis revealed that the Verrucomicrobia bacterial strains were closely related to Haloferula or Verrucomicrobium.


Asunto(s)
Actinobacteria/clasificación , Bacteroidetes/clasificación , Beta vulgaris/microbiología , Proteobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Biodiversidad , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Raíces de Plantas/microbiología , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA