Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 13(8): e0202740, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30153295

RESUMEN

Despite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid by assessing pH change, ion release and conversion to hydroxyapatite. The viability, proliferation, attachment, osteogenesis and endothelial marker expression of human adipose stem cells (hASCs) was evaluated upon direct culture on glass discs and in the extract medium. This is the first study evaluating cell behavior in response to borosilicate glasses based on S53P4 (commercially available as BonAlive®). Replacing silicate with borate in S53P4 increased the glass reactivity. Despite the good viability of hASCs under all conditions, direct culture of cells on borosilicate discs and in undiluted extract medium reduced cell proliferation. This was accompanied with changes in cell morphology. Regarding osteogenic commitment, alkaline phosphatase activity was significantly reduced by the borosilicate glass discs and extracts, whereas the expression of osteogenic markers RUNX2a, OSTERIX, DLX5 and OSTEOPONTIN was upregulated. There was also a borosilicate glass-induced increase in osteocalcin protein production. Moreover, osteogenic supplements containing borosilicate extracts significantly increased the mineral production in comparison to the osteogenic medium control. Interestingly, borosilicate glasses stimulated the expression of endothelial markers vWF and PECAM-1. To conclude, our results reveal that despite reducing hASC proliferation, S53P4-based borosilicate glasses and their dissolution products stimulate osteogenic commitment and upregulate endothelial markers, thus supporting their further evaluation for regenerative medicine.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular/efectos de los fármacos , Vidrio/química , Osteogénesis/efectos de los fármacos , Silicatos/farmacología , Tejido Adiposo/citología , Fosfatasa Alcalina/metabolismo , Boro/química , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Osteopontina/genética , Osteopontina/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Silicatos/química , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
Stem Cells Transl Med ; 4(12): 1391-402, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26494778

RESUMEN

UNLABELLED: Bone morphogenetic protein-2 (BMP-2) is a growth factor used to stimulate bone regeneration in clinical applications. However, there are contradicting reports on the functionality of BMP-2 in human adipose stem cells (hASCs), which are frequently used in tissue engineering. In this study, we analyzed the effects of BMP-2 on SMAD1/5 signaling, proliferation, and differentiation in hASCs. Our results indicated that BMP-2 induced dose-dependent (25-100 ng/ml) activation of SMAD signaling. Furthermore, the cell proliferation analysis revealed that BMP-2 (100 ng/ml) consistently decreased the proliferation in all the cell lines studied. However, the analysis of the differentiation potential revealed that BMP-2 (100 ng/ml) exhibited a donor-dependent dual role, inducing both osteogenic and adipogenic differentiation in hASCs. The quantitative alkaline phosphatase (qALP) activity and mineralization levels were clearly enhanced in particular donor cell lines by BMP-2 stimulus. On the contrary, in other cell lines, qALP and mineralization levels were diminished and the lipid formation was enhanced. The current study also suggests that hASCs have accelerated biochemical responsiveness to BMP-2 stimulus in human serum-supplemented culture medium compared with fetal bovine serum. The production origin of the BMP-2 growth factor is also important for its response: BMP-2 produced in mammalian cells enhanced signaling and differentiation responses compared with BMP-2 produced in Escherichia coli. These results explain the existing contradiction in the reported BMP-2 studies and indicate the variability in the functional end mechanism of BMP-2-stimulated hASCs. SIGNIFICANCE: This study examined how bone morphogenetic protein-2 (BMP-2) modulates the SMAD signaling mechanism and the proliferation and differentiation outcome of human adipose stem cells (hASCs) derived from several donors. The results indicate that BMP-2 triggers molecular SMAD signaling mechanisms in hASCs and regulates differentiation processes in human serum-culture conditions. Importantly, BMP-2 has dual activity, inducing osteogenic and adipogenic differentiation, subject to hASC donor line studied. These findings explain contradictory previous results and highlight the importance of further studies to understand how signaling pathways guide mesenchymal stem cell functions at the molecular level.


Asunto(s)
Adipogénesis/efectos de los fármacos , Tejido Adiposo/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Madre/metabolismo , Tejido Adiposo/citología , Adulto , Anciano , Animales , Bovinos , Femenino , Humanos , Persona de Mediana Edad , Células Madre/citología , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA