Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Thyroid J ; 10(5): 372-381, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34540707

RESUMEN

BACKGROUND: Several guidelines have recommended that the use of the lowest effective dose of antithyroid drugs (ATDs) that maintains maternal serum free thyroxine (FT4) levels at or moderately above the upper limit of the reference range is appropriate for fetal euthyroid status. However, little is known about whether ATD dosage affects the difference in serum FT4 levels between the mother and neonate. We conducted a retrospective study at a tertiary hospital in Japan to investigate the dose-dependent influence of ATDs on both maternal and fetal thyroid hormone status. MATERIALS AND METHODS: We retrospectively examined 62 pregnant women who delivered between 2007 and 2016 and were treated for Graves' hyperthyroidism with ATD at any stage during pregnancy. We selected individuals whose data on maternal FT4 level within 4 weeks of their deliveries and cord FT4 level of their infants at the time of delivery were available. Those with multiple pregnancies, iodine or glucocorticoid treatment, and fetal goiter detected by ultrasonography were excluded. RESULTS: After the exclusion criteria were applied, we recruited 40 individuals. The cord FT4 levels were significantly lower than the maternal FT4 levels in patients treated with high-dosage ATDs (methimazole >5 mg daily or propylthiouracil >100 mg daily). However, there were no significant differences between maternal and cord FT4 levels in patients treated with low-dosage ATDs (methimazole ≤5 mg daily or propylthiouracil ≤100 mg daily). We selected 35 individuals whose data on maternal thyrotropin receptor-binding inhibitory immunoglobulin (TBII) level were available. Multiple linear regression analysis adjusted for ATD dosage, maternal TBII level, and gestational period found that ATD dosage was a significant predictor of the difference in serum FT4 levels between the mother and neonate. In terms of maternal complications, multiple logistic regression analysis identified maternal free triiodothyronine (FT3) level as a significant predictor of the incidence of preterm delivery. CONCLUSIONS: We found a dose-dependent influence of ATDs on the difference in serum FT4 levels between mothers with Graves' hyperthyroidism and their neonates. Further studies to evaluate the optimal target FT4 and FT3 levels for the mother and neonate during pregnancy may improve the outcome of pregnant women with Graves' hyperthyroidism.

2.
Sci Adv ; 2(8): e1501723, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27540587

RESUMEN

Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/genética , Ácido gamma-Aminobutírico/metabolismo , Animales , Axones/metabolismo , Señalización del Calcio , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Eminencia Media/metabolismo , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de GABA-A/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Simportadores/metabolismo , Cotransportadores de K Cl
3.
Endocr J ; 59(7): 547-54, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22484995

RESUMEN

Neuropeptide W (NPW) was isolated as an endogenous ligand for NPBWR1, an orphan G protein-coupled receptor localized in the rat brain, including the paraventricular nucleus. It has been reported that central administration of NPW stimulates corticosterone secretion in rats. We hypothesized that NPW activates the hypothalamic-pituitary-adrenal (HPA) axis via corticotrophin-releasing factor (CRF) and/or arginine vasopressin (AVP). NPW at 1 pM to 10 nM did not affect basal or ACTH-induced corticosterone release from dispersed rat adrenocortical cells, or basal and CRF-induced ACTH release from dispersed rat anterior pituitary cells. In conscious and unrestrained male rats, intravenous administration of 2.5 and 25 nmol NPW did not affect plasma ACTH levels. However, intracerebroventricular (icv) administration of 2.5 and 5.0 nmol NPW increased plasma ACTH levels in a dose-dependent manner at 15 min after stimulation (5.0 vs. 2.5 nmol NPW vs. vehicle: 1802 ± 349 vs. 1170 ± 204 vs. 151 ± 28 pg/mL, respectively, mean ± SEM). Pretreatment with astressin, a CRF receptor antagonist, inhibited the increase in plasma ACTH levels induced by icv administration of 2.5 nmol NPW at 15 min (453 ± 176 vs. 1532 ± 343 pg/mL, p<0.05) and at 30 min (564 ± 147 vs. 1214 ± 139 pg/mL, p<0.05) versus pretreatment with vehicle alone. However, pretreatment with [1-(ß-mercapto-ß, ß-cyclopentamethylenepropionic acid), 2-(Ο-methyl)tyrosine]-arg-vasopressin, a V1a/V1b receptor antagonist, did not affect icv NPW-induced ACTH release at any time (p>0.05). In conclusion, we suggest that central NPW activates the HPA axis by activating hypothalamic CRF but not AVP.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Arginina Vasopresina/fisiología , Hormona Liberadora de Corticotropina/fisiología , Neuropéptidos/farmacología , Hormona Adrenocorticotrópica/sangre , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas , Células Cultivadas , Corticosterona/metabolismo , Evaluación Preclínica de Medicamentos , Antagonistas de Hormonas/administración & dosificación , Antagonistas de Hormonas/farmacología , Inyecciones Intravenosas , Masculino , Neuropéptidos/administración & dosificación , Adenohipófisis/citología , Adenohipófisis/efectos de los fármacos , Adenohipófisis/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA