Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 31: 101161, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38094199

RESUMEN

(AAV)-mediated episomal gene replacement therapy for monogenic liver disorders is currently limited in pediatric settings due to the loss of vector DNA, associated with hepatocyte duplication during liver growth. Genome editing is a promising strategy leading to a permanent and specific genome modification that is transmitted to daughter cells upon proliferation. Using genome targeting, we previously rescued neonatal lethality in mice with Crigler-Najjar syndrome. This rare monogenic disease is characterized by severe neonatal unconjugated hyperbilirubinemia, neurological damage, and death. Here, using the CRISPR-Staphylococcus aureus Cas9 (SaCas9) platform, we edited the disease-causing mutation present in the Ugt1a locus of these mice. Newborn mice were treated with two AAV8 vectors: one expressing the SaCas9 and single guide RNA, and the other carrying the Ugt1a homology regions with the corrected sequence, while maintained in a temporary phototherapy setting rescuing mortality. We observed a 50% plasma bilirubin reduction that remained stable for up to 6 months. We then tested different Cas9:donor vector ratios, with a 1:5 ratio showing the greatest efficacy in lowering plasma bilirubin, with partial lethality rescue when more severe, lethal conditions were applied. In conclusion, we reduced plasma bilirubin to safe levels and partially rescued neonatal lethality by correcting the mutant Ugt1a1 gene of a Crigler-Najjar mouse model.

2.
Anatomy & Cell Biology ; : 342-354, 2020.
Artículo | WPRIM | ID: wpr-830250

RESUMEN

Cymbopogon citratus is a tropical phytomedicinal plant that is widely known for its hypoglycemic, hypolipidemic, anxiolytic, sedative, antioxidative and anti-inflammatory properties. In this study, we have examined the neuroprotective effects of the essential oil (ESO) of Cymbopogon citratus, following aluminum chloride (AlCl3)-induced neurotoxicity within the cerebellum of Wistar rats. A total of 40 adult male Wistar rats were assigned into five groups and treated orally as follows: A–phosphate-buffered saline (1 ml daily for 15 days); B–ESO (50 mg/kg daily for 15 days); C–AlCl3 (100 mg/kg daily for 15 days); D–AlCl3 then ESO (100 mg/kg AlCl3 daily for 15 days followed by 50 mg/kg ESO daily for subsequent 15 days); E– ESO then AlCl3 (50 mg/kg ESO daily for 15 days followed by 100 mg/kg AlCl3 daily for following 15 days). To address our questions, we observed the locomotion and exploratory behavior of the rats in the open field apparatus and subsequently evaluated cerebellar oxidative redox parameters, neural bioenergetics, acetylcholinesterase levels, transferrin receptor protein, and total protein profiles by biochemical assays. Furthermore, we investigated cerebellar histomorphology and Nissl profile by H&E and Cresyl violet Nissl staining procedures. ESO treatment markedly attenuated deficits in exploratory activities and rearing behavior following AlCl3 toxicity, indicating its anxiolytic potentials. Additionally, AlCl3 evokedincrease in malondialdehyde and nitric oxide levels, as well as repressed cerebellar catalase, glutathione peroxidase, and superoxide dismutase profiles were normalised to baseline levels by ESO treatment. Treatment with ESO, ergo, exhibits substantial neuroprotective and modulatory potentials in response to AlCl3 toxicity.

3.
Anatomy & Cell Biology ; : 342-354, 2020.
Artículo | WPRIM | ID: wpr-830243

RESUMEN

Cymbopogon citratus is a tropical phytomedicinal plant that is widely known for its hypoglycemic, hypolipidemic, anxiolytic, sedative, antioxidative and anti-inflammatory properties. In this study, we have examined the neuroprotective effects of the essential oil (ESO) of Cymbopogon citratus, following aluminum chloride (AlCl3)-induced neurotoxicity within the cerebellum of Wistar rats. A total of 40 adult male Wistar rats were assigned into five groups and treated orally as follows: A–phosphate-buffered saline (1 ml daily for 15 days); B–ESO (50 mg/kg daily for 15 days); C–AlCl3 (100 mg/kg daily for 15 days); D–AlCl3 then ESO (100 mg/kg AlCl3 daily for 15 days followed by 50 mg/kg ESO daily for subsequent 15 days); E– ESO then AlCl3 (50 mg/kg ESO daily for 15 days followed by 100 mg/kg AlCl3 daily for following 15 days). To address our questions, we observed the locomotion and exploratory behavior of the rats in the open field apparatus and subsequently evaluated cerebellar oxidative redox parameters, neural bioenergetics, acetylcholinesterase levels, transferrin receptor protein, and total protein profiles by biochemical assays. Furthermore, we investigated cerebellar histomorphology and Nissl profile by H&E and Cresyl violet Nissl staining procedures. ESO treatment markedly attenuated deficits in exploratory activities and rearing behavior following AlCl3 toxicity, indicating its anxiolytic potentials. Additionally, AlCl3 evokedincrease in malondialdehyde and nitric oxide levels, as well as repressed cerebellar catalase, glutathione peroxidase, and superoxide dismutase profiles were normalised to baseline levels by ESO treatment. Treatment with ESO, ergo, exhibits substantial neuroprotective and modulatory potentials in response to AlCl3 toxicity.

4.
Environ Toxicol Pharmacol ; 62: 120-131, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30005307

RESUMEN

Metal ions are crucial for normal neurochemical signaling and perturbations in their homeostasis have been associated with neurodegenerative processes. Hypothesizing that in vivo modulation of key neurochemical processes including metal ion regulation (by transferrin receptor-1: TfR-1) in cells can improve disease outcome, we investigated the efficacy of a complex vitamin supplement (CVS) containing B-vitamins and ascorbic acid in preventing/reversing behavioral decline and neuropathology in rats. Wistar rats (eight weeks-old) were assigned into five groups (n = 8), including controls and those administered CVS (400 mg/kg/day) for two weeks before or after AlCl3 (100 mg/kg)-induced neurotoxicity. Following behavioral assessments, prefrontal cortex (PFC) and hippocampus were prepared for biochemical analyses, histology and histochemistry. CVS significantly reversed reduction of exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety. These correlated with CVS-dependent modulation of TfP-1 expression that were accompanied by significant reversal of neural oxidative stress in expressed superoxide dismutase, nitric oxide, catalase, glutathione peroxidase and malondialdehyde. Furthermore, CVS inhibited neural bioenergetics dysfunction, with increased labelling of glucokinase within PFC and hippocampus correlating with increased glucose-6-phosphate dehydrogenase and decreased lactate dehydrogenase expressions. These relates to inhibition of over-expressed acetylcholinesterase and increased total protein synthesis. Histological and Nissl staining of thin sections corroborated roles of CVS in reversing AlCl3-induced neuropathology. Summarily, we showed the role of CVS in normalizing important neurochemical molecules linking concurrent progression of oxidative stress, bioenergetics deficits, synaptic dysfunction and cellular hypertrophy during neurodegeneration.


Asunto(s)
Ácido Ascórbico/farmacología , Fármacos Neuroprotectores/farmacología , Complejo Vitamínico B/farmacología , Vitaminas/farmacología , Cloruro de Aluminio , Compuestos de Aluminio/toxicidad , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Cloruros/toxicidad , Cognición/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/fisiopatología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas Wistar
5.
Pathophysiology ; 25(1): 57-62, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29307662

RESUMEN

Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology.

6.
Metab Brain Dis ; 32(4): 1147-1161, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28405779

RESUMEN

Earliest signs of neurodegenerative cascades in the course of Alzheimer's disease (AD) are seen within the prefrontal cortex (PFC) and hippocampus, with pathological evidences in both cortical structures correlating with manifestation of behavioural and cognitive deficits. Despite the enormous problems associated with AD's clinical manifestations in sufferers, therapeutic advances for the disorder are still very limited. Therefore, this study examined cortico-hippocampal microstructures in models of AD, and evaluated the possible beneficial roles of kolaviron (Kv)-a biflavonoid complex in rats. Nine groups of rats were orally exposed to sodium azide (NaN3) or aluminium chloride (AlCl3) solely or in different combinations with Kv. Sequel to sacrifice and transcardial perfusion (using buffered saline then 4% paraformaldehyde), PFC and hippocampal tissues were harvested and processed for: spectrophotometric assays of oxidative stress and neuronal bioenergetics parameters, histological demonstration of cytoarchitecture and immunohistochemical evaluation of astrocytes and neuronal cytoskeleton. Results showed alterations in mitochondrial functions, which led to compromised neuronal antioxidant system, dysfunctional neural bioenergetics, hypertrophic astrogliosis, cytoskeletal dysregulation and neuronal death within the PFC and hippocampus. These degenerative events were associated with NaN3 and AlCl3 toxicity in rats. Furthermore, Kv inhibited cortico-hippocampal degeneration through multiple mechanisms that primarily involved halting of biochemical cascades that activate proteases which destroy molecules expedient for cell survival, and others that mediate a program of cell suicide in neuronal apoptosis. In conclusion, Kv showed important neuroprotective roles within cortico-hippocampal cells through multiple mechanisms, and particularly has prominent prophylactic activity than regenerative potentials.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Corteza Cerebral/efectos de los fármacos , Flavonoides/uso terapéutico , Hipocampo/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , Cloruro de Aluminio , Compuestos de Aluminio , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Muerte Celular/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cloruros , Flavonoides/farmacología , Hipocampo/metabolismo , Hipocampo/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas , Azida Sódica , Superóxido Dismutasa/metabolismo
7.
Environ Toxicol Pharmacol ; 50: 200-211, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28192749

RESUMEN

Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl3)-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural alterations.


Asunto(s)
Compuestos de Aluminio/toxicidad , Enfermedad de Alzheimer/tratamiento farmacológico , Ansiedad/tratamiento farmacológico , Ácido Ascórbico/administración & dosificación , Cloruros/toxicidad , Conducta Exploratoria/efectos de los fármacos , Cloruro de Aluminio , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/psicología , Animales , Ácido Ascórbico/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/efectos de los fármacos , Humanos , Peroxidación de Lípido , Corteza Prefrontal/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA