Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 234(2): 688-703, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35043984

RESUMEN

Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore-space, and models of AMF-enhanced P-uptake are poorly validated. We used synchrotron X-ray computed tomography to visualize mycorrhizas in soil and synchrotron X-ray fluorescence/X-ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co-locate with areas of high P and low Al, and preferentially associate with organic-type P species over Al-rich inorganic P. We discovered that AMF avoid Al-rich areas as a source of P. Sulphur-rich regions were found to be correlated with higher hyphal density and an increased organic-associated P-pool, whilst oxidized S-species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome-related. Our experimentally-validated model led to an estimate of P-uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated - a result with significant implications for the modelling of plant-soil-AMF interactions.


Asunto(s)
Micorrizas , Hongos , Hifa , Fósforo , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo
2.
Nature ; 543(7645): 328-336, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300100

RESUMEN

Plants encounter a myriad of microorganisms, particularly at the root-soil interface, that can invade with detrimental or beneficial outcomes. Prevalent beneficial associations between plants and microorganisms include those that promote plant growth by facilitating the acquisition of limiting nutrients such as nitrogen and phosphorus. But while promoting such symbiotic relationships, plants must restrict the formation of pathogenic associations. Achieving this balance requires the perception of potential invading microorganisms through the signals that they produce, followed by the activation of either symbiotic responses that promote microbial colonization or immune responses that limit it.


Asunto(s)
Inmunidad de la Planta , Plantas/metabolismo , Plantas/microbiología , Transducción de Señal , Simbiosis , Acetilglucosamina/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA