Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(7): 2758-63, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24497506

RESUMEN

A cone snail venom peptide, µO§-conotoxin GVIIJ from Conus geographus, has a unique posttranslational modification, S-cysteinylated cysteine, which makes possible formation of a covalent tether of peptide to its target Na channels at a distinct ligand-binding site. µO§-conotoxin GVIIJ is a 35-aa peptide, with 7 cysteine residues; six of the cysteines form 3 disulfide cross-links, and one (Cys24) is S-cysteinylated. Due to limited availability of native GVIIJ, we primarily used a synthetic analog whose Cys24 was S-glutathionylated (abbreviated GVIIJSSG). The peptide-channel complex is stabilized by a disulfide tether between Cys24 of the peptide and Cys910 of rat (r) NaV1.2. A mutant channel of rNaV1.2 lacking a cysteine near the pore loop of domain II (C910L), was >10(3)-fold less sensitive to GVIIJSSG than was wild-type rNaV1.2. In contrast, although rNaV1.5 was >10(4)-fold less sensitive to GVIIJSSG than NaV1.2, an rNaV1.5 mutant with a cysteine in the homologous location, rNaV1.5[L869C], was >10(3)-fold more sensitive than wild-type rNaV1.5. The susceptibility of rNaV1.2 to GVIIJSSG was significantly altered by treating the channels with thiol-oxidizing or disulfide-reducing agents. Furthermore, coexpression of rNaVß2 or rNaVß4, but not that of rNaVß1 or rNaVß3, protected rNaV1.1 to -1.7 (excluding NaV1.5) against block by GVIIJSSG. Thus, GVIIJ-related peptides may serve as probes for both the redox state of extracellular cysteines and for assessing which NaVß- and NaVα-subunits are present in native neurons.


Asunto(s)
Conotoxinas/toxicidad , Disulfuros/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neuronas/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Conotoxinas/genética , Conotoxinas/metabolismo , Cisteína/metabolismo , Cartilla de ADN/genética , ADN Complementario/genética , Datos de Secuencia Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Ratas , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(6): 2319-24, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469798

RESUMEN

Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging.


Asunto(s)
Neuronas/efectos de los fármacos , Corteza Somatosensorial/efectos de los fármacos , Animales , Animales Recién Nacidos , Técnicas Biosensibles , Frío , Isotiocianatos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Umbral Sensorial/efectos de los fármacos , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Especificidad de la Especie , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(31): 12758-63, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22778416

RESUMEN

Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal population while simultaneously investigating specific isoforms of signaling molecules expressed in each. In this study we characterized two subclasses of menthol-sensitive neurons from cultures of dissociated mouse dorsal-root ganglia. Although these neurons represent a small fraction of the dorsal-root ganglia neuronal population, we were able to identify them and investigate the cell-specific constellations of ion channels and receptors functionally expressed in each subclass, using a panel of selective pharmacological tools. Differences were found in the functional expression of ATP receptors, TRPA1 channels, voltage-gated calcium-, potassium-, and sodium channels, and responses to physiologically relevant cold temperatures. Furthermore, the cell-specific responses to various stimuli could be altered through pharmacological interventions targeted to the cell-specific constellation of ion channels expressed in each menthol-sensitive subclass. In fact, the normal responses to cold temperature could be reversed in the two neuronal subclasses by the coapplication of the appropriate combination of pharmacological agents. This result suggests that the functionally integrated constellation of signaling molecules in a particular type of cell is a more appropriate target for effective pharmacological intervention than a single signaling molecule. This shift from molecular to cellular targets has important implications for basic research and drug discovery. We refer to this paradigm as "constellation pharmacology."


Asunto(s)
Antipruriginosos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mentol/farmacología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas , Canales de Potencial de Receptor Transitorio/biosíntesis , Animales , Frío , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
5.
Curr Pharm Des ; 14(24): 2462-79, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18781995

RESUMEN

Over two decades of research on venom peptides derived from cone snails ("conopeptides or conotoxins") has led to several compounds that have reached human clinical trials, most of them for the treatment of pain. Remarkably, none of the conopeptides in clinical development mediate analgesia through the opioid receptors, underlying the diverse and novel neuropharmacology evolved by Conus snails. These predatory animals produce an estimated approximately 100,000 distinct conotoxins, a vast majority yet to be discovered and characterized. The conopeptides studied to-date in animal models, have exhibited antinociceptive, antiepileptic, neuroprotective or cardioprotective activities. Screening results also suggest applications of conotoxins in cancer, neuromuscular and psychiatric disorders. Additional potentially important applications of conotoxin research are the discovery and validation of new therapeutic targets, also defining novel binding sites on already validated molecular targets. As the structural and functional diversity of conotoxins is being investigated, the Conus venoms continue to surprise with the plethora of neuropharmacological compounds and potential new therapeutics. This review summarizes recent efforts in the discovery of conopeptides, and their preclinical and clinical development.


Asunto(s)
Conotoxinas/uso terapéutico , Caracol Conus/química , Diseño de Fármacos , Péptidos/uso terapéutico , Secuencia de Aminoácidos , Animales , Canales de Calcio/metabolismo , Ensayos Clínicos como Asunto , Conotoxinas/aislamiento & purificación , Conotoxinas/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Datos de Secuencia Molecular , Péptidos/aislamiento & purificación , Péptidos/farmacología , Filogenia , Conformación Proteica , Canales de Sodio/metabolismo
6.
J Biol Chem ; 283(34): 23026-32, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18505731

RESUMEN

Two venom peptides, CPY-Pl1 (EU000528) and CPY-Fe1 (EU000529), characterized from the vermivorous marine snails Conus planorbis and Conus ferrugineus, define a new class of conopeptides, the conopeptide Y (CPY) family. The peptides have no disulfide cross-links and are 30 amino acids long; the high content of tyrosine is unprecedented for any native gene product. The CPY peptides were chemically synthesized and shown to be biologically active upon injection into both mice and Caenorhabditis elegans; activity on mammalian Kv1 channel isoforms was demonstrated using an oocyte heterologous expression system, and selectivity for Kv1.6 was found. NMR spectroscopy revealed that the peptides were unstructured in aqueous solution; however, a helical region including residues 12-18 for one peptide, CPY-Pl1, formed in trifluoroethanol buffer. Clones obtained from cDNA of both species encoded prepropeptide precursors that shared a unique signal sequence, indicating that these peptides are encoded by a novel gene family. This is the first report of tyrosine-rich bioactive peptides in Conus venom.


Asunto(s)
Péptidos/química , Canales de Potasio con Entrada de Voltaje/química , Tirosina/química , Secuencia de Aminoácidos , Animales , Caracol Conus , ADN Complementario/metabolismo , Canal de Potasio Kv1.6/química , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Venenos de Moluscos/metabolismo , Oocitos/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares , Trifluoroetanol/química
7.
Dev Neurobiol ; 68(7): 972-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18418876

RESUMEN

In an attempt to determine whether the rescue of developing motoneurons (MNS) from programmed cell death (PCD) in the chick embryo following reductions in neuromuscular function involves muscle or neuronal nicotinic acetylcholine receptors (nAChRs), we have employed a novel cone snail toxin alphaA-OIVA that acts selectively to antagonize the embryonic/fetal form of muscle nAChRs. The results demonstrate that alphaA-OIVA is nearly as effective as curare or alpha-bungarotoxin (alpha-BTX) in reducing neuromuscular function and is equally effective in increasing MN survival and intramuscular axon branching. Together with previous reports, we also provide evidence consistent with a transition between the embryonic/fetal form to the adult form of muscle nAChRs in chicken that involves the loss of the gamma subunit in the adult receptor. We conclude that selective inhibition of the embryonic/fetal form of the chicken muscle nAChR is sufficient to rescue MNs from PCD without any involvement of neuronal nAChRs.


Asunto(s)
Apoptosis/fisiología , Neuronas Motoras/fisiología , Unión Neuromuscular/citología , Receptores Nicotínicos/fisiología , Animales , Apoptosis/efectos de los fármacos , Axones/efectos de los fármacos , Axones/fisiología , Bungarotoxinas/farmacología , Supervivencia Celular , Embrión de Pollo , Conotoxinas/farmacología , Curare/farmacología , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Movimiento/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/embriología , Antagonistas Nicotínicos/farmacología , Péptidos Cíclicos/farmacología , Tubulina (Proteína)/metabolismo
8.
Toxicon ; 51(2): 218-29, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17996262

RESUMEN

The considerable diversity of Conus peptides in the I(1)-superfamily provides a rare opportunity to define parameters important for the post-translational l- to d-isomerization of amino acids. This subtlest of post-translational modifications is not readily detectable by most techniques, and it would be a considerable advance if one could predict its potential occurrence purely from gene sequences. We previously described three I(1)-conotoxins, iota-RXIA (formerly designated r11a), r11b and r11c, each containing a d-amino acid at the third position from the C-terminus. In this work, we investigated two novel I(1)-superfamily members, r11d and ar11a, which we show have only l-amino acids. Based on these observations and an analysis of cDNA sequences of other group members, we suggest that there is a rule to predict d-amino acids in I(1)-superfamily peptides. Two factors are important: the residue to be modified should be three amino acids from the C-terminus of the precursor sequence, and it should be in a suitable sequence context. We apply the rule to other members of the I(1)-superfamily, to determine a priori which are probably modified.


Asunto(s)
Aminoácidos/química , Conotoxinas/química , Secuencia de Aminoácidos , Animales , Clonación Molecular , Conotoxinas/farmacología , Caracol Conus , ADN Complementario , Electrofisiología , Espectrometría de Masas , Datos de Secuencia Molecular , Músculo Esquelético/efectos de los fármacos , Rana pipiens , Homología de Secuencia de Aminoácido
9.
Biochemistry ; 45(27): 8331-40, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16819832

RESUMEN

Using assay-directed fractionation of the venom from the vermivorous cone snail Conus planorbis, we isolated a new conotoxin, designated pl14a, with potent activity at both nicotinic acetylcholine receptors and a voltage-gated potassium channel subtype. pl14a contains 25 amino acid residues with an amidated C-terminus, an elongated N-terminal tail (six residues), and two disulfide bonds (1-3, 2-4 connectivity) in a novel framework distinct from other conotoxins. The peptide was chemically synthesized, and its three-dimensional structure was demonstrated to be well-defined, with an alpha-helix and two 3(10)-helices present. Analysis of a cDNA clone encoding the prepropeptide precursor of pl14a revealed a novel signal sequence, indicating that pl14a belongs to a new gene superfamily, the J-conotoxin superfamily. Five additional peptides in the J-superfamily were identified. Intracranial injection of pl14a in mice elicited excitatory symptoms that included shaking, rapid circling, barrel rolling, and seizures. Using the oocyte heterologous expression system, pl14a was shown to inhibit both a K+ channel subtype (Kv1.6, IC50 = 1.59 microM) and neuronal (IC50 = 8.7 microM for alpha3beta4) and neuromuscular (IC50 = 0.54 microM for alpha1beta1 epsilondelta) subtypes of the nicotinic acetylcholine receptor (nAChR). Similarities in sequence and structure are apparent between the middle loop of pl14a and the second loop of a number of alpha-conotoxins. This is the first conotoxin shown to affect the activity of both voltage-gated and ligand-gated ion channels.


Asunto(s)
Conotoxinas/farmacología , Caracol Conus/química , Canal de Potasio Kv1.6/antagonistas & inhibidores , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Conotoxinas/química , Conotoxinas/aislamiento & purificación , Caracol Conus/genética , ADN Complementario/química , Ratones , Datos de Secuencia Molecular , Músculos/efectos de los fármacos , Neuronas/efectos de los fármacos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/aislamiento & purificación , Filogenia , Conformación Proteica
10.
J Mol Evol ; 62(3): 247-56, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16477526

RESUMEN

The toxoglossate mollusks are a large group of venomous animals (>10,000 species) conventionally divided into three groups, the cone snails, the auger snails, and the turrid snails; turrids account for >90% of the biodiversity of toxoglossans. Only the venoms of cone snails have been intensively investigated, with little work focused on turrids. We report the first broad characterization of genes expressed in venom ducts of any turrid species. Twenty-three different cDNA clones encoding putative toxins were characterized from the venom duct of the turrine species Lophiotoma olangoensis Olivera 2002 and belong to 16 different gene families. Of the 16 different Lophiotoma olangoensis gene families that encode putative toxins, for only 1 was there clear evidence of sequence similarity with any conotoxin gene family. The I-like gene family of Lophiotoma olangoensis was found to be related to the K channel-targeted I(2) conotoxin superfamily. Most putative Lophiotoma toxins are cysteine-rich polypeptides, with a significant fraction much larger (>80 amino acids) than the toxins from cone snails. A small number were not cysteine-rich but had hydrophobic amino acid clusters interspersed with arginine residues. This is only 1 of >10,000 different turrid venoms that needs to be characterized. From this study, a common origin with Conus for one family of putative turrid toxins is indicated.


Asunto(s)
Conotoxinas/química , Conotoxinas/genética , Moluscos/anatomía & histología , Moluscos/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Secuencia Conservada , Cisteína/genética , Cisteína/metabolismo , ADN Complementario/genética , Expresión Génica , Datos de Secuencia Molecular , Precursores de Proteínas/química , Precursores de Proteínas/genética , Alineación de Secuencia
11.
FEBS J ; 272(16): 4178-88, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16098199

RESUMEN

Post-translational isomerization of l-amino acids to d-amino acids is a subtle modification, not detectable by standard techniques such as Edman sequencing or MS. Accurate predictions require more sequences of modified polypeptides. A 46-amino-acid-long conotoxin, r11a, belonging to the I-superfamily was previously shown to have a d-Phe residue at position 44. In this report, we characterize two related peptides, r11b and r11c, with d-Phe and d-Leu, respectively, at the homologous position. Electrophysiological tests show that all three peptides induce repetitive activity in frog motor nerve, and epimerization of the single amino acid at the third position from the C-terminus attenuates the potency of r11a and r11b, but not that of r11c. Furthermore, r11c (but neither r11a nor r11b) also acts on skeletal muscle. We identified more cDNA clones encoding conopeptide precursors with Cys patterns similar to r11a/b/c. Although the predicted mature toxins have the same cysteine patterns, they belong to two different gene superfamilies. A potential correlation between the identity of the gene superfamily to which the I-conotoxin belongs and the presence or absence of a d-amino acid in the primary sequence is discussed. The great diversity of I-conopeptide sequences provides a rare opportunity for defining parameters that may be important for this most stealthy of all post-translational modifications. Our results indicate that neither the chemical nature of the side chain nor the precise vicinal sequence around the modified residue seem to be critical, but there may be favored loci for isomerization to a d-amino acid.


Asunto(s)
Aminoácidos/química , Conotoxinas/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Clonación Molecular , Conotoxinas/aislamiento & purificación , ADN Complementario , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
J Biol Chem ; 279(17): 17596-606, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14701840

RESUMEN

The generation of functional novelty in proteins encoded by a gene superfamily is seldom well documented. In this report, we define the A-conotoxin superfamily, which is widely expressed in venoms of the predatory cone snails (Conus), and show how gene products that diverge considerably in structure and function have arisen within the same superfamily. A cDNA clone encoding alpha-conotoxin GI, the first conotoxin characterized, provided initial data that identified the A-superfamily. Conotoxin precursors in the A-superfamily were identified from six Conus species: most (11/16) encoded alpha-conotoxins, but some (5/16) belong to a family of excitatory peptides, the kappaA-conotoxins that target voltage-gated ion channels. alpha-Conotoxins are two-disulfide-bridged nicotinic antagonists, 13-19 amino acids in length; kappaA-conotoxins are larger (31-36 amino acids) with three disulfide bridges. Purification and biochemical characterization of one peptide, kappaA-conotoxin MIVA is reported; five of the other predicted conotoxins were previously venom-purified. A comparative analysis of conotoxins purified from venom, and their precursors reveal novel post-translational processing, as well as mutational events leading to polymorphism. Patterns of sequence divergence and Cys codon usage define the major superfamily branches and suggest how these separate branches arose.


Asunto(s)
Conotoxinas/química , Conotoxinas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quimotripsina/farmacología , Clonación Molecular , Codón , Cistina/química , Análisis Mutacional de ADN , ADN Complementario/metabolismo , Disulfuros , Vectores Genéticos , Datos de Secuencia Molecular , Familia de Multigenes , Péptidos/química , Plásmidos/metabolismo , Polimorfismo Genético , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Caracoles , Factores de Tiempo
13.
J Biol Chem ; 278(4): 2177-83, 2003 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-12399472

RESUMEN

Voltage-gated ion channels determine the membrane excitability of cells. Although many Conus peptides that interact with voltage-gated Na(+) and Ca(2+) channels have been characterized, relatively few have been identified that interact with K(+) channels. We describe a novel Conus peptide that interacts with the Shaker K(+) channel, kappaM-conotoxin RIIIK from Conus radiatus. The peptide was chemically synthesized. Although kappaM-conotoxin RIIIK is structurally similar to the mu-conotoxins that are sodium channel blockers, it does not affect any of the sodium channels tested, but blocks Shaker K(+) channels. Studies using Shaker K(+) channel mutants with single residue substitutions reveal that the peptide interacts with the pore region of the channel. Introduction of a negative charge at residue 427 (K427D) greatly increases the affinity of the toxin, whereas the substitutions at two other residues, Phe(425) and Thr(449), drastically reduced toxin affinity. Based on the Shaker results, a teleost homolog of the Shaker K(+) channel, TSha1 was identified as a kappaM-conotoxin RIIIK target. Binding of kappaM-conotoxin RIIIK is state-dependent, with an IC(50) of 20 nm for the closed state and 60 nm at 0 mV for the open state of TSha1 channels.


Asunto(s)
Conotoxinas/química , Conotoxinas/farmacocinética , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Peces , Concentración 50 Inhibidora , Cinética , Ligandos , Datos de Secuencia Molecular , Moluscos , Mutación , Péptidos/química , Canales de Potasio/química , ARN Complementario/metabolismo , Homología de Secuencia de Aminoácido , Venenos de Serpiente , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA