Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 361: 130047, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34029903

RESUMEN

Inhibition of maltase, sucrase, isomaltase and glucoamylase activity by acarbose, epigallocatechin gallate, epicatechin gallate and four polyphenol-rich tea extract from white, green, oolong, black tea, were investigated by using rat intestinal enzymes and human Caco-2 cells. Regarding rat intestinal enzyme mixture, all four tea extracts were very effective in inhibiting maltase and glucoamylase activity, but only white tea extract inhibited sucrase and isomaltase activity and the inhibition was limited. Mixed-type inhibition on rat maltase activity was observed. Tea extracts in combination with acarbose, produced a synergistic inhibitory effect on rat maltase activity. Caco-2 cells experiments were conducted in Transwells. Green tea extract and epigallocatechin gallate show dose-dependent inhibition on human sucrase activity, but no inhibition on rat sucrase activity. The opposite was observed on maltase activity. The results highlighted the different response in the two investigated model systems and show that tea polyphenols are good inhibitors for α-glucosidase activity.


Asunto(s)
Glicósido Hidrolasas/antagonistas & inhibidores , Intestinos/enzimología , Extractos Vegetales/química , Polifenoles/farmacología , Té/química , Acarbosa/farmacología , Animales , Células CACO-2 , Catequina/análogos & derivados , Catequina/farmacología , Glucano 1,4-alfa-Glucosidasa/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Cinética , Oligo-1,6-Glucosidasa/antagonistas & inhibidores , Ratas , Sacarasa/antagonistas & inhibidores , alfa-Glucosidasas/efectos de los fármacos
2.
Food Funct ; 11(7): 5933-5943, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32567616

RESUMEN

The inhibitory effect of tea polyphenols on starch digestibility can contribute to the control of the glycaemic index of starchy food. In this study, wheat bread and gluten-free bread were co-digested in vitro with different amounts of tea polyphenols. The kinetics of starch digestion and polyphenol bio-accessibility during in vitro digestion were monitored. The results showed that co-digestion of bread with tea polyphenols dose-dependently slowed the starch digestion kinetics and this effect is influenced by the types of polyphenols and the presence of gluten. The presence of gluten lowered the inhibitory efficacy of tannins on starch digestibility to 7.4% and 47.5% when 25 mg of tannins were co-digested with wheat bread and gluten-free bread, respectively. In contrast, the presence of gluten had little impact on the inhibitory efficacy of monomeric polyphenols. This study shows that the release of tea polyphenols in the digestive environment is a promising strategy for controlling the glycaemic index of starchy food and that monomeric and polymeric tea polyphenols differently affect starch digestion according to the presence of gluten.


Asunto(s)
Digestión/efectos de los fármacos , Glútenes/análisis , Extractos Vegetales/farmacología , Polifenoles/farmacología , Té/química , Glucemia , Pan/análisis , Índice Glucémico , Almidón/química , Triticum/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo
3.
J Agric Food Chem ; 68(7): 1844-1850, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31081326

RESUMEN

The extract of microalga Nitzschia laevis (NLE) is considered a source of dietary fucoxanthin, a carotenoid possessing a variety of health benefits. In the present study, the bioaccessibility and deacetylation of fucoxanthin were studied by simulated in vitro gastrointestinal digestion and colonic batch fermentation. In the gastric phase, higher fucoxanthin loss was observed at pH 3 compared to pH 4 and 5. Lipases are crucial for the deacetylation of fucoxanthin into fucoxanthinol. Fucoxanthinol production decreased significantly in the order: pure fucoxanthin (25.3%) > NLE (21.3%) > fucoxanthin-containing emulsion (11.74%). More than 32.7% of fucoxanthin and fucoxanthinol was bioaccessible after gastrointestinal digestion of NLE. During colon fermentation of NLE, a higher loss of fucoxanthin and changes of short-chain fatty acid production were observed but no fucoxanthinol was detected. Altogether, we provided novel insights on the fucoxanthin fate along the human digestion tract and showed the potential of NLE as a promising source of fucoxanthin.


Asunto(s)
Colon/metabolismo , Diatomeas/química , Microalgas/química , Extractos Vegetales/metabolismo , Xantófilas/metabolismo , Diatomeas/metabolismo , Digestión , Fermentación , Humanos , Microalgas/metabolismo
4.
Nutrients ; 10(11)2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445774

RESUMEN

Studies demonstrate that the potential health-beneficial effect of sulforaphane (SR), a compound formed in broccoli, is the result of a number of mechanisms including upregulation of phase two detoxification enzymes. Recent studies suggest that SR increases expression/activity of glyoxalase 1 (Glo1), an enzyme involved in the degradation of methylglyoxal, is major precursor of advanced glycation end products. Those compounds are associated with diabetes complications and other age-related diseases. In this study, the effect of SR on the expression/activity of Glo1 in peripheral blood mononuclear cells (PBMCs) from 8 healthy volunteers was investigated. PBMCs were isolated and incubated with SR (2.5 µM-concentration achievable by consuming a broccoli portion) for 24 h and 48 h. Glo1 activity/expression, reduced glutathione (GSH), and glutathione-S-transferase gene expression were measured. Glo1 activity was not affected while after 48 h a slight but significant increase of its gene expression (1.03-fold) was observed. GSTP1 expression slightly increased after 24 h incubation (1.08-fold) while the expressions of isoform GSTT2 and GSTM2 were below the limit of detection. GSH sharply decreased, suggesting the formation of GSH-SR adducts that may have an impact SR availability. Those results suggest that a regular exposure to SR by broccoli consumption or SR supplements may enhance Glo1.


Asunto(s)
Ingestión de Alimentos/fisiología , Isotiocianatos/farmacología , Lactoilglutatión Liasa/metabolismo , Leucocitos Mononucleares/metabolismo , Adulto , Brassica/química , Femenino , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Sulfóxidos
5.
J Cosmet Dermatol ; 17(2): 246-257, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28670794

RESUMEN

BACKGROUND: Skin whitening products, used for ages by Asian people for cultural and esthetic purposes, are very popular nowadays in Western countries as well, where the need to inhibit skin spots after sun exposure has become not only a cosmetic but also a health-related issue. Thus, the development of effective and safe depigmenting agents derived from natural products gets continuous attention by cosmetic brands and consumers. OBJECTIVES: The aim of this study was to determine the effects of two preparations, obtained from the hairy root cultures of the species Brassica rapa, on melanogenesis and the expression of the extracellular matrix proteins involved in a correct pigment distribution. METHODS: The two preparations, obtained by water-ethanol extraction and by digestion of cell-wall glycoproteins of the root cells, were chemically characterized and tested on skin cell cultures and on human skin explants to investigate on their dermatological activities. RESULTS: Both the extracts were able to decrease melanin synthesis pathway in melanocytes and modulate the expression of genes involved in melanin distribution. One of the extracts was also effective in inducing the expression of laminin-5 and collagen IV, involved into the maintenance of tissue integrity. The two extracts, when tested together on human skin explants, demonstrated a good synergic hypopigmenting activity. CONCLUSIONS: Taken together, the results indicate that the extracts from B. rapa root cultures can be employed as cosmetic active ingredients in skin whitening products and as potential therapeutic agents for treating pigmentation disorders.


Asunto(s)
Brassica rapa , Melaninas/biosíntesis , Extractos Vegetales/farmacología , Preparaciones para Aclaramiento de la Piel/farmacología , Pigmentación de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Colágeno Tipo IV/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Queratinocitos/metabolismo , Laminina/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Raíces de Plantas , Biosíntesis de Proteínas/efectos de los fármacos , Kalinina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA