Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cancer Res ; 13(3): 470-82, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25563294

RESUMEN

UNLABELLED: In neuroblastoma, MYCN genomic amplification and segmental chromosomal alterations including 1p or 11q loss of heterozygocity and/or 17q gain are associated with progression and poor clinical outcome. Segmental alterations are the strongest predictor of relapse and result from unbalanced translocations attributable to erroneous repair of chromosomal breaks. Although sequence analysis of affected genomic regions suggests that these errors arise by nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB), abnormalities in NHEJ have not been implicated in neuroblastoma pathogenesis. On this basis, the hypothesis that an error-prone mechanism of NHEJ is critical for neuroblastoma cell survival was tested. Plasmid-based DSB repair assays demonstrated efficient NHEJ activity in human neuroblastoma cells with repair products that were error-prone relative to nontransformed cells. Neuroblastoma cells derived from tumorigenic neuroblastic phenotypes had differential DNA repair protein expression patterns compared with nontumorigenic cells. Tumorigenic neuroblastoma cells were deficient in DNA ligase IV (Lig4) and Artemis (DCLRE1C), mediators of canonical NHEJ. Conversely, enzymes required for an error-prone alternative NHEJ pathway (alt-NHEJ), DNA Ligase IIIα (Lig3), DNA Ligase I (Lig1), and PARP1 protein were upregulated. Inhibition of Lig3 and Lig1 led to DSB accumulation and cell death, linking alt-NHEJ to cell survival in neuroblastoma. Neuroblastoma cells demonstrated sensitivity to PARP1 inhibition (PARPi) that paralleled PARP1 expression. In a dataset of human neuroblastoma patient tumors, overexpression of genes encoding alt-NHEJ proteins associated with poor survival. IMPLICATIONS: These findings provide an insight into DNA repair fidelity in neuroblastoma and identify components of the alt-NHEJ pathway as promising therapeutic targets.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Neuroblastoma/genética , Línea Celular Tumoral , Supervivencia Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pronóstico
2.
Sci Transl Med ; 3(67): 67ra8, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21270339

RESUMEN

Cells generate adenosine triphosphate (ATP) by glycolysis and by oxidative phosphorylation (OXPHOS). Despite the importance of having sufficient ATP available for the energy-dependent processes involved in immune activation, little is known about the metabolic adaptations that occur in vivo to meet the increased demand for ATP in activated and proliferating lymphocytes. We found that bone marrow (BM) cells proliferating after BM transplantation (BMT) increased aerobic glycolysis but not OXPHOS, whereas T cells proliferating in response to alloantigens during graft-versus-host disease (GVHD) increased both aerobic glycolysis and OXPHOS. Metabolomic analysis of alloreactive T cells showed an accumulation of acylcarnitines consistent with changes in fatty acid oxidation. Alloreactive T cells also exhibited a hyperpolarized mitochondrial membrane potential (ΔΨm), increased superoxide production, and decreased amounts of antioxidants, whereas proliferating BM cells did not. Bz-423, a small-molecule inhibitor of the mitochondrial F(1)F(0) adenosine triphosphate synthase (F(1)F(0)-ATPase), selectively increased superoxide and induced the apoptosis of alloreactive T cells, which arrested established GVHD in several BMT models without affecting hematopoietic engraftment or lymphocyte reconstitution. These findings challenge the current paradigm that activated T cells meet their increased demands for ATP through aerobic glycolysis, and identify the possibility that bioenergetic and redox characteristics can be selectively exploited as a therapeutic strategy for immune disorders.


Asunto(s)
Apoptosis/inmunología , Enfermedad Injerto contra Huésped/inmunología , Isoantígenos/inmunología , Fosforilación Oxidativa , Linfocitos T/metabolismo , Animales , Apoptosis/efectos de los fármacos , Benzodiazepinas/farmacología , Benzodiazepinas/uso terapéutico , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/inmunología , Femenino , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Lactatos/metabolismo , Activación de Linfocitos , Metaboloma , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/efectos de los fármacos
3.
Bioorg Med Chem Lett ; 16(9): 2423-7, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16488147

RESUMEN

A family of 1,4-benzodiazepine-2,5-diones (BZDs) has been synthesized and evaluated against transformed B- and T-cells for lymphotoxic members. A large aromatic group on the C3 position is critical for cytotoxicity. When the C3 moiety contains an electron-rich heterocycle, the resulting BZDs have sub-micromolar potency and are selective for T-cells. Cell death is consistent with apoptosis and does not result from inhibition of the mitochondrial F(o)F1-ATPase, which is the molecular target of recently reported cytotoxic 1,4-benzodiazepines. Collectively, these studies begin to characterize some of the structural elements required for the activity of a novel family of T-cell-selective lymphotoxic agents.


Asunto(s)
Benzodiazepinas/síntesis química , Benzodiazepinas/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Benzodiazepinas/química , Muerte Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Células Jurkat , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
4.
Chem Biol ; 12(4): 485-96, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15850986

RESUMEN

Bz-423 is a 1,4-benzodiazepine that suppresses disease in lupus-prone mice by selectively killing pathogenic lymphocytes, and it is less toxic compared to current lupus drugs. Cells exposed to Bz-423 rapidly generate O(2)(-) within mitochondria, and this reactive oxygen species is the signal initiating apoptosis. Phage display screening revealed that Bz-423 binds to the oligomycin sensitivity conferring protein (OSCP) component of the mitochondrial F(1)F(0)-ATPase. Bz-423 inhibited the F(1)F(0)-ATPase in vitro, and reconstitution experiments demonstrated that inhibition was mediated by the OSCP. This target was further validated by generating cells with reduced OSCP expression using RNA interference and studying the sensitivity of these cells to Bz-423. Our findings help explain the efficacy and selectivity of Bz-423 for autoimmune lymphocytes and highlight the OSCP as a target to guide the development of novel lupus therapeutics.


Asunto(s)
Benzodiazepinas/farmacología , Inhibidores Enzimáticos/farmacología , Factores Inmunológicos/farmacología , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Bovinos , Muerte Celular/efectos de los fármacos , Línea Celular , Clonación Molecular , Evaluación Preclínica de Medicamentos , Humanos , Indicadores y Reactivos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/enzimología , Consumo de Oxígeno/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA