Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 62(6): 1568-1591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33176441

RESUMEN

This paper reviews and analyses the importance of maize as staple food in Eastern and Southern Africa (E&SA) and contributes in understanding the nexus between maize nutritional composition and prevalence of micronutrient deficiencies (MNDs) in these regions. MNDs remain a major public health concern particularly for women and children, with calcium, iodine, iron, selenium, zinc, folate and vitamin A deficiencies being the most common. Estimates of their prevalence are among the highest in E&SA: iron-deficient anemia affected 26 to 31% of women of reproductive age, and deficiencies up to 53%, 36%, 66%, 75% and 62% for vitamin A, iodine, zinc, calcium and selenium, respectively, were measured in populations of these regions. Besides, these two regions show the highest worldwide maize per capita consumption (g/person/day) as main staple, with 157 in Eastern Africa and 267 in Southern Africa, including up to 444 in Lesotho. The analysis of food composition tables from these regions showed that 100 g of maize foods consumed by these populations could to some extent, contribute in satisfying dietary reference intakes (DRIs) of children and women in energy, proteins, carbohydrates, magnesium, zinc, vitamins B1 and B6. However, it provides very low supply of fats, calcium, sodium, selenium, vitamins C, A and E. The high occurrence of MNDs and considerable nutritional potential of maize consumed in E&SA can be explained by loss of nutrients due to processing practices, low food diversification and reduced nutrients bioavailability. Success cases of the main strategies to tackle the issue of MNDs in these regions by improving maize nutritional quality are discussed in this paper. Maize fortification was shown to improve nutrition and health outcomes of population. Increasing dietary diversity by complementing maize with other foods has improved nutrition through integration of micronutrient-rich foods in the diet. Mostly, biofortification has successfully contributed in reducing vitamin A and zinc deficiencies in rural communities more than nutrient supplementation, fortification and dietary diversity.


Asunto(s)
Selenio , Zea mays , Niño , Femenino , Alimentos Fortificados , Humanos , Micronutrientes , Nutrientes
2.
Proc Nutr Soc ; 78(3): 340-350, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30967168

RESUMEN

Some food bioactives potentially exert anti-obesity effects. Anthocyanins (ACN), catechins, ß-glucan (BG) and n-3 long chain PUFA (LCPUFA) are among the most promising candidates and have been considered as a strategy for the development of functional foods counteracting body weight gain. At present, clinical trials, reviews and meta-analyses addressing anti-obesity effects of various bioactives or bioactive-rich foods show contradictory results. Abdominal obesity is an important criterion for metabolic syndrome (MetS) diagnosis along with glucose intolerance, dyslipidaemia and hypertension. Food bioactives are supposed to exert beneficial effects on these parameters, therefore representing alternative therapy approaches for the treatment of MetS. This review summarises outcomes on MetS biomarkers in recent clinical trials supplementing ACN, catechins, BG and n-3 LCPUFA, focusing mainly on anti-obesity effects. Overall, it is clear that the level of evidence for the effectiveness varies not only among the different bioactives but also among the different putative health benefits suggested for the same bioactive. Limited evidence may be due to the low number of controlled intervention trials or to inconsistencies in trial design, i.e. duration, dose and/or the method of bioactive supplementation (extracts, supplements, rich or enriched food). At present, the question 'Are bioactives effective in weight management and prevention of metabolic syndrome?' remains inconclusive. Thus, a common effort to harmonise the study design of intervention trials focusing on the most promising bioactive molecules is urgently needed to strengthen the evidence of their potential in the treatment of obesity, MetS and related diseases.


Asunto(s)
Fármacos Antiobesidad , Metabolismo Energético , Síndrome Metabólico , Fitoquímicos , Antocianinas , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Catequina , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Ácidos Grasos Omega-3 , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Síndrome Metabólico/terapia , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , beta-Glucanos
3.
Plant Physiol ; 126(1): 210-21, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11351084

RESUMEN

Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383-390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1-->5)-alpha-L-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1-->5)-alpha-L-arabinan deposition in pericarp CW and the Cnr phenotype is discussed.


Asunto(s)
Pectinas/metabolismo , Polisacáridos/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestructura , Microscopía Electrónica de Rastreo , Mutación
4.
J Biol Chem ; 276(22): 19404-13, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11278866

RESUMEN

Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.


Asunto(s)
Pared Celular/química , Pectinas/química , Pisum sativum/química , Anticuerpos Monoclonales/metabolismo , Unión Competitiva , Calcio/metabolismo , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Epítopos , Esterificación , Inmunohistoquímica , Modelos Biológicos , Proteínas de Plantas/metabolismo , Poligalacturonasa/metabolismo , Polisacárido Liasas/metabolismo , Estructura Terciaria de Proteína , Factores de Tiempo
5.
Plant Physiol ; 122(3): 775-81, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10712541

RESUMEN

Scanning electron microscopic examination of intact tomato (Lycopersicon esculentum) pericarp and isolated pericarp cell walls revealed pit fields and associated radiating ridges on the inner face of cell walls. In regions of the cell wall away from pit fields, equivalent ridges occurred in parallel arrays. Treatment of isolated cell walls with a calcium chelator resulted in the loss of these ridges, indicating that they contain homogalacturonan-rich pectic polysaccharides. Immunolabeling procedures confirmed that pit fields and associated radiating ridges contained homogalacturonan. Epitopes of the side chains of pectic polysaccharides were not located in the same regions as homogalacturonan and were spatially regulated in relation to pit fields. A (1-->4)-beta-galactan epitope was absent from cell walls in regions of pit fields. A (1-->5)-alpha-arabinan epitope occurred most abundantly at the inner face of cell walls in regions surrounding the pit fields.


Asunto(s)
Pectinas/metabolismo , Polisacáridos/metabolismo , Solanum lycopersicum/metabolismo , Anticuerpos Monoclonales , Pared Celular/metabolismo , Pared Celular/ultraestructura , Epítopos/química , Solanum lycopersicum/inmunología , Solanum lycopersicum/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Inmunoelectrónica , Pectinas/química , Pectinas/inmunología , Polisacáridos/química , Polisacáridos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA