Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 4: CD013110, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33822364

RESUMEN

BACKGROUND: Bronchiectasis is characterised by excessive sputum production, chronic cough, and acute exacerbations and is associated with symptoms of dyspnoea and fatigue, which reduce exercise tolerance and impair quality of life. Exercise training in isolation or in conjunction with other interventions is beneficial for people with other respiratory diseases, but its effects in bronchiectasis have not been well established. OBJECTIVES: To determine effects of exercise training compared to usual care on exercise tolerance (primary outcome), quality of life (primary outcome), incidence of acute exacerbation and hospitalisation, respiratory and mental health symptoms, physical function, mortality, and adverse events in people with stable or acute exacerbation of bronchiectasis. SEARCH METHODS: We identified trials from the Cochrane Airways Specialised Register, ClinicalTrials.gov, and the World Health Organization trials portal, from their inception to October 2020. We reviewed respiratory conference abstracts and reference lists of all primary studies and review articles for additional references. SELECTION CRITERIA: We included randomised controlled trials in which exercise training of at least four weeks' duration (or eight sessions) was compared to usual care for people with stable bronchiectasis or experiencing an acute exacerbation. Co-interventions with exercise training including education, respiratory muscle training, and airway clearance therapy were permitted if also applied as part of usual care. DATA COLLECTION AND ANALYSIS: Two review authors independently screened and selected trials for inclusion, extracted outcome data, and assessed risk of bias. We contacted study authors for missing data. We calculated mean differences (MDs) using a random-effects model. We used the GRADE approach to assess the certainty of evidence. MAIN RESULTS: We included six studies, two of which were published as abstracts, with a total of 275 participants. Five studies were undertaken with people with clinically stable bronchiectasis, and one pilot study was undertaken post acute exacerbation. All studies included co-interventions such as instructions for airway clearance therapy and/or breathing strategies, provision of an educational booklet, and delivery of educational sessions. The duration of training ranged from six to eight weeks, with a mix of supervised and unsupervised sessions conducted in the outpatient or home setting. No studies of children were included in the review; however we identified two studies as currently ongoing. No data were available regarding physical activity levels or adverse events. For people with stable bronchiectasis, evidence suggests that exercise training compared to usual care improves functional exercise tolerance as measured by the incremental shuttle walk distance, with a mean difference (MD) between groups of 87 metres (95% confidence interval (CI) 43 to 132 metres; 4 studies, 161 participants; low-certainty evidence). Evidence also suggests that exercise training improves six-minute walk distance (6MWD) (MD between groups of 42 metres, 95% CI 22 to 62; 1 study, 76 participants; low-certainty evidence). The magnitude of these observed mean changes appears clinically relevant as they exceed minimal clinically important difference (MCID) thresholds for people with chronic lung disease. Evidence suggests that quality of life improves following exercise training according to St George's Respiratory Questionnaire (SGRQ) total score (MD -9.62 points, 95% CI -15.67 to -3.56 points; 3 studies, 160 participants; low-certainty evidence), which exceeds the MCID of 4 points for this outcome. A reduction in dyspnoea (MD 1.0 points, 95% CI 0.47 to 1.53; 1 study, 76 participants) and fatigue (MD 1.51 points, 95% CI 0.80 to 2.22 points; 1 study, 76 participants) was observed following exercise training according to these domains of the Chronic Respiratory Disease Questionnaire. However, there was no change in cough-related quality of life as measured by the Leicester Cough Questionnaire (LCQ) (MD -0.09 points, 95% CI -0.98 to 0.80 points; 2 studies, 103 participants; moderate-certainty evidence), nor in anxiety or depression. Two studies reported longer-term outcomes up to 12 months after intervention completion; however exercise training did not appear to improve exercise capacity or quality of life more than usual care. Exercise training reduced the number of acute exacerbations of bronchiectasis over 12 months in people with stable bronchiectasis (odds ratio 0.26, 95% CI 0.08 to 0.81; 1 study, 55 participants). After an acute exacerbation of bronchiectasis, data from a single study (N = 27) suggest that exercise training compared to usual care confers little to no effect on exercise capacity (MD 11 metres, 95% CI -27 to 49 metres; low-certainty evidence), SGRQ total score (MD 6.34 points, 95%CI -17.08 to 29.76 points), or LCQ score (MD -0.08 points, 95% CI -0.94 to 0.78 points; low-certainty evidence) and does not reduce the time to first exacerbation (hazard ratio 0.83, 95% CI 0.31 to 2.22). AUTHORS' CONCLUSIONS: This review provides low-certainty evidence suggesting improvement in functional exercise capacity and quality of life immediately following exercise training in people with stable bronchiectasis; however the effects of exercise training on cough-related quality of life and psychological symptoms appear to be minimal. Due to inadequate reporting of methods, small study numbers, and variation between study findings, evidence is of very low to moderate certainty. Limited evidence is available to show longer-term effects of exercise training on these outcomes.


Asunto(s)
Bronquiectasia/rehabilitación , Tolerancia al Ejercicio , Ejercicio Físico , Calidad de Vida , Adulto , Sesgo , Ejercicios Respiratorios , Bronquiectasia/mortalidad , Tos/terapia , Progresión de la Enfermedad , Disnea/rehabilitación , Hospitalización , Humanos , Salud Mental , Resistencia Física , Rendimiento Físico Funcional , Trastornos Respiratorios/rehabilitación , Prueba de Paso
2.
Cochrane Database Syst Rev ; 7: CD004104, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28702957

RESUMEN

BACKGROUND: Non-invasive ventilation (NIV) with bi-level positive airway pressure (BiPAP) is commonly used to treat patients admitted to hospital with acute hypercapnic respiratory failure (AHRF) secondary to an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). OBJECTIVES: To compare the efficacy of NIV applied in conjunction with usual care versus usual care involving no mechanical ventilation alone in adults with AHRF due to AECOPD. The aim of this review is to update the evidence base with the goals of supporting clinical practice and providing recommendations for future evaluation and research. SEARCH METHODS: We identified trials from the Cochrane Airways Group Specialised Register of trials (CAGR), which is derived from systematic searches of bibliographic databases including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and PsycINFO, and through handsearching of respiratory journals and meeting abstracts. This update to the original review incorporates the results of database searches up to January 2017. SELECTION CRITERIA: All randomised controlled trials that compared usual care plus NIV (BiPAP) versus usual care alone in an acute hospital setting for patients with AECOPD due to AHRF were eligible for inclusion. AHRF was defined by a mean admission pH < 7.35 and mean partial pressure of carbon dioxide (PaCO2) > 45 mmHg (6 kPa). Primary review outcomes were mortality during hospital admission and need for endotracheal intubation. Secondary outcomes included hospital length of stay, treatment intolerance, complications, changes in symptoms, and changes in arterial blood gases. DATA COLLECTION AND ANALYSIS: Two review authors independently applied the selection criteria to determine study eligibility, performed data extraction, and determined risk of bias in accordance with Cochrane guidelines. Review authors undertook meta-analysis for data that were both clinically and statistically homogenous, and analysed data as both one overall pooled sample and according to two predefined subgroups related to exacerbation severity (admission pH between 7.35 and 7.30 vs below 7.30) and NIV treatment setting (intensive care unit-based vs ward-based). We reported results for mortality, need for endotracheal intubation, and hospital length of stay in a 'Summary of findings' table and rated their quality in accordance with GRADE criteria. MAIN RESULTS: We included in the review 17 randomised controlled trials involving 1264 participants. Available data indicate that mean age at recruitment was 66.8 years (range 57.7 to 70.5 years) and that most participants (65%) were male. Most studies (12/17) were at risk of performance bias, and for most (14/17), the risk of detection bias was uncertain. These risks may have affected subjective patient-reported outcome measures (e.g. dyspnoea) and secondary review outcomes, respectively.Use of NIV decreased the risk of mortality by 46% (risk ratio (RR) 0.54, 95% confidence interval (CI) 0.38 to 0.76; N = 12 studies; number needed to treat for an additional beneficial outcome (NNTB) 12, 95% CI 9 to 23) and decreased the risk of needing endotracheal intubation by 65% (RR 0.36, 95% CI 0.28 to 0.46; N = 17 studies; NNTB 5, 95% CI 5 to 6). We graded both outcomes as 'moderate' quality owing to uncertainty regarding risk of bias for several studies. Inspection of the funnel plot related to need for endotracheal intubation raised the possibility of some publication bias pertaining to this outcome. NIV use was also associated with reduced length of hospital stay (mean difference (MD) -3.39 days, 95% CI -5.93 to -0.85; N = 10 studies), reduced incidence of complications (unrelated to NIV) (RR 0.26, 95% CI 0.13 to 0.53; N = 2 studies), and improvement in pH (MD 0.05, 95% CI 0.02 to 0.07; N = 8 studies) and in partial pressure of oxygen (PaO2) (MD 7.47 mmHg, 95% CI 0.78 to 14.16 mmHg; N = 8 studies) at one hour. A trend towards improvement in PaCO2 was observed, but this finding was not statistically significant (MD -4.62 mmHg, 95% CI -11.05 to 1.80 mmHg; N = 8 studies). Post hoc analysis revealed that this lack of benefit was due to the fact that data from two studies at high risk of bias showed baseline imbalance for this outcome (worse in the NIV group than in the usual care group). Sensitivity analysis revealed that exclusion of these two studies resulted in a statistically significant positive effect of NIV on PaCO2. Treatment intolerance was significantly greater in the NIV group than in the usual care group (risk difference (RD) 0.11, 95% CI 0.04 to 0.17; N = 6 studies). Results of analysis showed a non-significant trend towards reduction in dyspnoea with NIV compared with usual care (standardised mean difference (SMD) -0.16, 95% CI -0.34 to 0.02; N = 4 studies). Subgroup analyses revealed no significant between-group differences. AUTHORS' CONCLUSIONS: Data from good quality randomised controlled trials show that NIV is beneficial as a first-line intervention in conjunction with usual care for reducing the likelihood of mortality and endotracheal intubation in patients admitted with acute hypercapnic respiratory failure secondary to an acute exacerbation of chronic obstructive pulmonary disease (COPD). The magnitude of benefit for these outcomes appears similar for patients with acidosis of a mild (pH 7.30 to 7.35) versus a more severe nature (pH < 7.30), and when NIV is applied within the intensive care unit (ICU) or ward setting.


Asunto(s)
Ventilación no Invasiva/métodos , Respiración con Presión Positiva/métodos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Insuficiencia Respiratoria/terapia , Adulto , Progresión de la Enfermedad , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia Respiratoria/etiología
3.
ERJ Open Res ; 2(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27730178

RESUMEN

The aim of this review was to identify the effectiveness of therapies added on to conventional exercise training to maximise exercise capacity in patients with chronic obstructive pulmonary disease (COPD). Electronic databases were searched, identifying trials comparing exercise training with exercise training plus "add-on" therapy. Outcomes included peak oxygen uptake (V'O2peak), work rate and incremental/endurance cycle and field walking tests. Individual trial effects on exercise capacity were extracted and collated into eight subgroups and pooled for meta-analysis. Sensitivity analyses were conducted to explore the stability of effect estimates across studies employing patient-centred designs and those deemed to be of "high" quality (PEDro score >5 out of 10). 74 studies (2506 subjects) met review inclusion criteria. Interventions spanned a broad scope of clinical practice and were most commonly evaluated via the 6-min walking distance and V'O2peak. Meta-analysis revealed few clinically relevant and statistically significant benefits of "add-on" therapies on exercise performance compared with exercise training. Benefits favouring "add-on" therapies were observed across six different interventions (additional exercise training, noninvasive ventilation, bronchodilator therapy, growth hormone, vitamin D and nutritional supplementation). The sensitivity analyses included considerably fewer studies, but revealed minimal differences to the primary analysis. The lack of systematic benefits of "add-on" interventions is a probable reflection of methodological limitations, such as "one size fits all" eligibility criteria, that are inherent in many of the included studies of "add-on" therapies. Future clarification regarding the exact value of such therapies may only arise from adequately powered, multicentre clinical trials of tailored interventions for carefully selected COPD patient subgroups defined according to distinct clinical phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA