Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 34(10): 3961-3982, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35766888

RESUMEN

AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (ß1 and γ for AP-1 and ß2 and α for AP-2), a medium subunit µ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of ß subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2ß adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both ß adaptins is lethal in plants. We identified a critical role of ß adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, ß adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2ß adaptins in plants and their specialized roles in specific cell types.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clatrina/genética , Clatrina/metabolismo , Exocitosis/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polen/genética , Polen/metabolismo , Factor de Transcripción AP-1/metabolismo
2.
Plant Cell ; 33(8): 2850-2868, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34125207

RESUMEN

Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Polen/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Polen/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo , Ceras/química , Ceras/metabolismo
3.
J Biol Chem ; 294(46): 17626-17641, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31527081

RESUMEN

Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.


Asunto(s)
Chlamydomonas/metabolismo , Iones/metabolismo , Manganeso/metabolismo , Vacuolas/efectos de los fármacos , Calcio/metabolismo , Chlamydomonas/efectos de los fármacos , Iones/química , Manganeso/toxicidad , Fósforo/metabolismo , Vacuolas/metabolismo , Espectroscopía de Absorción de Rayos X
4.
PLoS Genet ; 12(8): e1006147, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27537183

RESUMEN

A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells) and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1) is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat) domain of the EMS1 (EXCESS MICROSPOROCYTES1) receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction.


Asunto(s)
Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Flores/genética , Proteínas Quinasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Flores/citología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ligandos , Polen/genética , Polen/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
5.
Plant Physiol ; 145(3): 801-13, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17905865

RESUMEN

Deubiquitinating enzymes are essential to the ubiquitin (Ub)/26S proteasome system where they release Ub monomers from the primary translation products of poly-Ub and Ub extension genes, recycle Ubs from polyubiquitinated proteins, and reverse the effects of ubiquitination by releasing bound Ubs from individual targets. The Ub-specific proteases (UBPs) are one large family of deubiquitinating enzymes that bear signature cysteine and histidine motifs. Here, we genetically characterize a UBP subfamily in Arabidopsis (Arabidopsis thaliana) encoded by paralogous UBP3 and UBP4 genes. Whereas homozygous ubp3 and ubp4 single mutants do not display obvious phenotypic abnormalities, double-homozygous mutant individuals could not be created due to a defect in pollen development and/or transmission. This pollen defect was rescued with a transgene encoding wild-type UBP3 or UBP4, but not with a transgene encoding an active-site mutant of UBP3, indicating that deubiquitination activity of UBP3/UBP4 is required. Nuclear DNA staining revealed that ubp3 ubp4 pollen often fail to undergo mitosis II, which generates the two sperm cells needed for double fertilization. Substantial changes in vacuolar morphology were also evident in mutant grains at the time of pollen dehiscence, suggesting defects in vacuole and endomembrane organization. Even though some ubp3 ubp4 pollen could germinate in vitro, they failed to fertilize wild-type ovules even in the absence of competing wild-type pollen. These studies provide additional evidence that the Ub/26S proteasome system is important for male gametogenesis in plants and suggest that deubiquitination of one or more targets by UBP3/UBP4 is critical for the development of functional pollen.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endopeptidasas/metabolismo , Polen/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Mutación
6.
Plant J ; 48(2): 193-205, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16965555

RESUMEN

We have used reverse-genetic analysis to investigate the function of MAP3K epsilon 1 and MAP3K epsilon 2, a pair of closely related Arabidopsis thaliana genes that encode protein kinases. Plants homozygous for either map3k epsilon 1 or map3k epsilon 2 displayed no apparent mutant phenotype, whereas the double-mutant combination caused pollen lethality. Transmission of the double-mutant combination through the female gametophyte was normal. Tetrad analysis performed using the Arabidopsis quartet mutation demonstrated that the pollen-lethal phenotype segregated at meiosis with the map3k epsilon 1;map3k epsilon 2 genotype. We used transmission electron microscopy to determine that double-mutant pollen grains develop plasma membrane irregularities following pollen mitosis I. Analysis of the subcellular localization of a yellow fluorescent protein (YFP):MAP3Kepsilon1 fusion protein using confocal microscopy and biochemical fractionation indicated that a substantial portion of the MAP3Kepsilon1 present in Arabidopsis cells is localized to the plasma membrane. Taken together, our results suggest that MAP3Kepsilon1 is required for the normal functioning of the plasma membrane in developing Arabidopsis pollen.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Quinasas Quinasa Quinasa PAM/fisiología , Infertilidad Vegetal/genética , Polen/genética , Proteínas Serina-Treonina Quinasas/fisiología , Arabidopsis/enzimología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Prueba de Complementación Genética , Genotipo , Proteínas Luminiscentes/análisis , Quinasas Quinasa Quinasa PAM/análisis , Quinasas Quinasa Quinasa PAM/genética , Microscopía Electrónica de Transmisión , Mitosis , Mutación , Fenotipo , Polen/fisiología , Polen/ultraestructura , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/análisis , Vacuolas/genética , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA