Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 347: 119058, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757689

RESUMEN

Soil and groundwater contamination caused by petroleum hydrocarbons is a severe environmental problem. In this study, a novel electrolyzed catalytic system (ECS) was developed to produce nanobubble-contained electrolyzed catalytic (NEC) water for the remediation of petroleum-hydrocarbon-contaminated soils and groundwater. The developed ECS applied high voltage (220 V) with direct current, and titanium electrodes coated with iridium dioxide were used in the system. The developed ECS prototype contained 21 electrode pairs (with a current density of 20 mA/cm2), which were connected in series to significantly enhance the hydroxyl radical production rate. Iron-copper hybrid oxide catalysts were laid between each electrode pair to improve the radical generation efficiency. The electron paramagnetic resonance (EPR) and Rhodamine B (RhB) methods were applied for the generated radical species and concentration determination. During the operation of the ECS, high concentrations of nanobubbles (nanobubble density = 3.7 × 109 particles/mL) were produced due to the occurrence of the cavitation mechanism. Because of the negative zeta potential and nano-scale characteristics of nanobubbles (mean diameter = 28 nm), the repelling force would prevent the occurrence of bubble aggregations and extend their lifetime in NEC water. The radicals produced after the bursting of the nanobubbles would be beneficial for the increase of the radical concentration and subsequent petroleum hydrocarbon oxidation. The highly oxidized NEC water (oxidation-reduction potential = 887 mV) could be produced with a radical concentration of 9.5 × 10-9 M. In the pilot-scale study, the prototype system was applied to clean up petroleum-hydrocarbon polluted soils at a diesel-oil spill site via an on-site slurry-phase soil washing process. The total petroleum hydrocarbon (TPH)-contaminated soils were excavated and treated with the NEC water in a slurry-phase reactor. Results show that up to 74.4% of TPH (initial concentration = 2846 mg/kg) could be removed from soils after four rounds of NEC water treatment (soil and NEC water ratio for each batch = 10 kg: 40 L and reaction time = 10 min). Within the petroleum-hydrocarbon plume, one remediation well (RW) and two monitor wells (located 1 m and 3 m downgradient of the RW) were installed along the groundwater flow direction. The produced NEC water was injected into the RW and the TPH concentrations in groundwater (initial concentrations = 12.3-15.2 mg/L) were assessed in these three wells. Compared to the control well, TPH concentrations in RW and MW1 dropped to below 0.4 and 2.1 mg/L after 6 m3 of NEC water injection in RW, respectively. Results from the pilot-scale study indicate that the NEC water could effectively remediate TPH-contaminated soils and groundwater without secondary pollution production. The main treatment mechanisms included (1) in situ chemical oxidation via produced radicals, (2) desorption of petroleum hydrocarbons from soil particles due to the dispersion of nanobubbles into soil pores, and (3) enhanced TPH oxidation due to produced radicals and energy after nanobubble bursting.


Asunto(s)
Agua Subterránea , Petróleo , Contaminantes del Suelo , Contaminación Ambiental , Hidrocarburos , Suelo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Microbiología del Suelo
2.
J Environ Manage ; 339: 117947, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075632

RESUMEN

Cr(VI) bioreduction has become a remedial alternative for Cr(VI)-polluted site cleanup. However, lack of appropriate Cr(VI)-bioreducing bacteria limit the field application of the in situ bioremediation process. In this study, two different immobilized Cr(VI)-bioreducing bacterial consortia using novel immobilization agents have been developed for Cr(VI)-polluted groundwater remediation: (1) granular activated carbon (GAC) + silica gel + Cr(VI)-bioreducing bacterial consortia (GSIB), and (2) GAC + sodium alginate (SA) + polyvinyl alcohol (PVA) + Cr(VI)-bioreducing bacterial consortia (GSPB). Moreover, two unique substrates [carbon-based agent (CBA) and emulsified polycolloid substrate (EPS)] were developed and used as the carbon sources for Cr(VI) bioreduction enhancement. The microbial diversity, dominant Cr-bioreducing bacteria, and changes of Cr(VI)-reducing genes (nsfA, yieF, and chrR) were analyzed to assess the effectiveness of Cr(VI) bioreduction. Approximately 99% of Cr(VI) could be bioreduced in microcosms with GSIB and CBA addition after 70 days of operation, which caused increased populations of total bacteria, nsfA, yieF, and chrR from 2.9 × 108 to 2.1 × 1012, 4.2 × 104 to 6.3 × 1011, 4.8 × 104 to 2 × 1011, and 6.9 × 104 to 3.7 × 107 gene copies/L. In microcosms with CBA and suspended bacteria addition (without bacterial immobilization), the Cr(VI) reduction efficiency dropped to 60.3%, indicating that immobilized Cr-bioreducing bacteria supplement could enhance Cr(VI) bioreduction. Supplement of GSPB led to a declined bacterial growth due to the cracking of the materials. The addition of GSIB and CBA could establish a reduced condition, which favored the growth of Cr(VI)-reducing bacteria. The Cr(VI) bioreduction efficiency could be significantly improved through adsorption and bioreduction mechanisms, and production of Cr(OH)3 precipitates confirmed the occurrence of Cr(VI) reduction. The main Cr-bioreducing bacteria included Trichococcus, Escherichia-Shigella, and Lactobacillus. Results suggest that the developed GSIB bioremedial system could be applied to cleanup Cr(VI)-polluted groundwater effectively.


Asunto(s)
Cromo , Agua Subterránea , Oxidación-Reducción , Cromo/análisis , Biodegradación Ambiental , Bacterias/genética
3.
Chemosphere ; 295: 133877, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35131270

RESUMEN

Sulfate reducing bacteria (SRB) have the capability of bioreducing hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] under sulfate-reducing conditions for toxicity reduction. However, a high amount of sulfate addition would cause elevated sulfide production, which could inhibit the growth of SRB and result in reduced Cr(VI) bioreduction efficiency. A slow release reagent, viscous carbon and sulfate-releasing colloidal substrates (VCSRCS), was prepared for a long-lasting carbon and sulfate supplement. In the column study, VCSRCS was injected into the column system to form a VCSRCS biobarrier for Cr(VI) containment and bioreduction. A complete Cr(VI) removal was observed via the adsorption and bioreduction mechanisms in the column with VCSRCS addition. Results from X-ray diffractometer analyses indicate that Cr(OH)3(s) and Cr2O3(s) were detected in precipitates, indicating the occurrence of Cr(VI) reduction followed by Cr(III) precipitation. Results from the Fourier-transform infrared spectroscopy analyses show that cell deposits carried functional groups, which could adsorb Cr. Addition of VCSRCS caused increased populations of total bacteria and dsrA, which also enhanced Cr(VI) reduction. Microbial diversity results indicate that VCSRCS addition resulted in the growth of Cr(VI)-reducing bacteria including Exiguobacterium, Citrobacter, Aerococcus, and SRB. Results of this study will be helpful in developing an effective and green VCSRCS biobarrier for the bioremediation of Cr(VI)-polluted groundwater.


Asunto(s)
Cromo , Agua Subterránea , Biodegradación Ambiental , Cromo/análisis , Oxidación-Reducción
4.
Water Environ Res ; 94(1): e1673, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34861087

RESUMEN

In this study, the emulsified castor oil (ECO) substrate was developed for a long-term supplement of biodegradable carbon with pH buffering capacity to anaerobically bioremediate trichloroethylene (TCE)-polluted groundwater. The ECO was produced by mixing castor oil, surfactants (sapindales and soya lecithin [SL]), vitamin complex, and a citrate/sodium phosphate dibasic buffer system together for slow carbon release. Results of the emulsification experiments and microcosm tests indicate that ECO emulsion had uniform small droplets (diameter = 539 nm) with stable oil-in-water characteristics. ECO had a long-lasting, dispersive, negative zeta potential (-13 mv), and biodegradable properties (viscosity = 357 cp). Approximately 97% of TCE could be removed with ECO supplement after a 95-day operational period without the accumulation of TCE dechlorination byproducts (dichloroethylene and vinyl chloride). The buffer system could neutralize acidified groundwater, and citrate could be served as a primary substrate. ECO addition caused an abrupt TCE adsorption at the initial stage and the subsequent removal of adsorbed TCE. Results from the next generation sequences and real-time polymerase chain reaction (PCR) indicate that the increased microbial communities and TCE-degrading bacterial consortia were observed after ECO addition. ECO could be used as a pH-control and carbon substrate to enhance anaerobic TCE biodegradation effectively. PRACTITIONER POINTS: Emulsified castor oil (ECO) contains castor oil, surfactants, and buffer for a slow carbon release and pH control. ECO can be a long-term carbon source for trichloroethylene (TCE) dechlorination without causing acidification. TCE removal after ECO addition is due to adsorption and reductive dechlorination mechanisms.


Asunto(s)
Agua Subterránea , Tricloroetileno , Biodegradación Ambiental , Carbono , Aceite de Ricino , Concentración de Iones de Hidrógeno
5.
Environ Sci Pollut Res Int ; 26(33): 34027-34038, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30232775

RESUMEN

The objectives of this study were to (1) conduct laboratory bench and column experiments to determine the oxidation kinetics and optimal operational parameters for trichloroethene (TCE)-contaminated groundwater remediation using potassium permanganate (KMnO4) as oxidant and (2) to conduct a pilot-scale study to assess the efficiency of TCE remediation by KMnO4 oxidation. The controlling factors in laboratory studies included soil oxidant demand (SOD), molar ratios of KMnO4 to TCE, KMnO4 decay rate, and molar ratios of Na2HPO4 to KMnO4 for manganese dioxide (MnO2) production control. Results show that a significant amount of KMnO4 was depleted when it was added in a soil/water system due to the existence of natural soil organic matters. The presence of natural organic material in soils can exert a significant oxidant demand thereby reducing the amount of KMnO4 available for the destruction of TCE as well as the overall oxidation rate of TCE. Supplement of higher concentrations of KMnO4 is required in the soil systems with high SOD values. Higher KMnO4 application resulted in more significant H+ and subsequent pH drop. The addition of Na2HPO4 could minimize the amount of produced MnO2 particles and prevent the clogging of soil pores, and TCE oxidation efficiency would not be affected by Na2HPO4. To obtain a complete TCE removal, the amount of KMnO4 used to oxidize TCE needs to be higher than the theoretical molar ratio of KMnO4 to TCE based on the stoichiometry equation. Relatively lower oxidation rates are obtained with lower initial TCE concentrations. The half-life of TCE decreased with increased KMnO4 concentrations. Results from the pilot-scale study indicate that a significant KMnO4 decay occurs after the injection due to the reaction of KMnO4 with soil organic matters, and thus, the amount of KMnO4, which could be transported from the injection point to the downgradient area, would be low. The effective influence zone of the KMnO4 oxidation was limited to the KMnO4 injection area (within a 3-m radius zone). Migration of KMnO4 to farther downgradient area was limited due to the reaction of KMnO4 to natural organic matters. To retain a higher TCE removal efficiency, continuous supplement of high concentrations of KMnO4 is required. The findings would be useful in designing an in situ field-scale ISCO system for TCE-contaminated groundwater remediation using KMnO4 as the oxidant.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Agua Subterránea/química , Permanganato de Potasio/química , Tricloroetileno/química , Contaminantes Químicos del Agua/química , Compuestos de Manganeso , Oxidantes , Oxidación-Reducción , Óxidos , Suelo , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA