Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982836

RESUMEN

Psidium guajava L. (guava) leaves have demonstrated their in vitro and in vivo effect against diabetes mellitus (DM). However, there is a lack of literature concerning the effect of the individual phenolic compounds present in the leaves in DM disease. The aim of the present work was to identify the individual compounds in Spanish guava leaves and their potential contribution to the observed anti-diabetic effect. Seventy-three phenolic compounds were identified from an 80% ethanol extract of guava leaves by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. The potential anti-diabetic activity of each compound was evaluated with the DIA-DB web server that uses a docking and molecular shape similarity approach. The DIA-DB web server revealed that aldose reductase was the target protein with heterogeneous affinity for compounds naringenin, avicularin, guaijaverin, quercetin, ellagic acid, morin, catechin and guavinoside C. Naringenin exhibited the highest number of interactions with target proteins dipeptidyl peptidase-4, hydroxysteroid 11-beta dehydrogenase 1, aldose reductase and peroxisome proliferator-activated receptor. Compounds catechin, quercetin and naringenin displayed similarities with the known antidiabetic drug tolrestat. In conclusion, the computational workflow showed that guava leaves contain several compounds acting in the DM mechanism by interacting with specific DM protein targets.


Asunto(s)
Catequina , Diabetes Mellitus , Psidium , Humanos , Aldehído Reductasa , Diabetes Mellitus/tratamiento farmacológico , Extractos Vegetales/química , Hojas de la Planta/química , Psidium/química , Quercetina/análisis
2.
J Biomol Struct Dyn ; 41(11): 5022-5044, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635123

RESUMEN

The inhibition of capping enzymes such as guanine-N7-methyltransferase (GMT) is an attractive target for regulating viral replication, transcription, virulence, and pathogenesis. Thus, compounds that target the Severe Acute Respiratory Syndrome Corona Virus 2 GMT (S2GMT) will enhance drug development against COVID-19. In this study, an in-house library of 249 phytochemicals from African medicinal plants was screened using computational approaches including homology modeling, molecular docking, molecular dynamic simulations, binding free energy calculations based on molecular mechanics/Poisson-Boltzmann surface area (MMPBSA) and Absorption-Distribution-Metabolism-Excretion-Toxicity (ADMET) analysis for inhibitors of S2GMT. The top-ten ranked phytochemicals (TTRP) obtained from the docking analysis to S2GMT were further docked to SARS-COV N7-MTase. Among the TTRP, the top-four ranked phytocompounds (TFRP) viz: 3 alkaloids (Isocryptolepine, 10'-Hydroxyusambarensine and Isostrychnopentamine) and a flavonoid (Mulberrofuran F) interacted strongly with critical catalytic residues whose interference either reduce or completely abolish N7-MTase activity, indicating their potential as capping machinery disruptors. The interactions of TFRP with the catalytic residues of S2GMT were preserved in a 100 ns simulated dynamic environment, thereby, demonstrating high degree of structural stability. The MMPBSA binding free energy calculations corroborated the docking scores with biscryptolepine having the highest binding free energy to S2GMT. The TFRP showed favourable drug-likeness and ADMET properties over a wide range of molecular descriptors. Therefore, the TFRP can be further explored as potential S2GMT inhibitors in in vitro and in vivo experiments.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antimaláricos , COVID-19 , Antagonistas del Ácido Fólico , Humanos , SARS-CoV-2 , Metiltransferasas , Simulación del Acoplamiento Molecular , Fitoquímicos
3.
Expert Opin Drug Discov ; 18(8): 903-915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36383405

RESUMEN

INTRODUCTION: The combination of Virtual Screening (VS) techniques with in vivo screening in the zebrafish model is currently being used in tandem for drug development in a faster and more efficient way. AREAS COVERED: We review the different virtual screening techniques, the use of zebrafish as a vertebrate model for drug discovery and the synergy that exists between them. EXPERT OPINION: We highlight the advantages of combining virtual and zebrafish larvae screening for drug discovery. On the one hand, VS is a faster and cheaper tool for searching active compounds and possible candidates for therapy than in vivo screening when processing large compound libraries. On the other hand, zebrafish larvae form a vertebrate model that allows in vivo screening of large amounts of the compounds. Importantly, physiology and chemical response are mostly conserved between zebrafish and mammals. The availability of the transgenic and mutant zebrafish lines allows an analysis of a specific phenotype upon treatment, along with toxicity, off-target effect, side effects, and dosage. The advantages of VS, in vivo whole animal approach screening, and the screening combinations are also reviewed.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Pez Cebra , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Descubrimiento de Drogas/métodos , Animales Modificados Genéticamente , Fenotipo , Evaluación Preclínica de Medicamentos/métodos , Mamíferos
4.
Antioxidants (Basel) ; 11(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421454

RESUMEN

Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965-2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.

5.
Nutrients ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079888

RESUMEN

The aim of the study was to explain the effects of sesquiterpene lactones (SLs) from chicory (Cichorium intybus L.) root extracts as inhibitors of acetylcholinesterase (AChE) at the molecular level and to determine the inhibition of AChE activity by specific SLs (lactucin and lactucopicrin) and different chicory extracts. The obtained SLs-rich extracts were purified by the countercurrent partition chromatography (CPC) technique. AChE inhibitors were analyzed using two models: isothermal titration calorimetry (ITC) and docking simulation. The results of ITC analysis of the enzyme and the ligands' complexation showed strong interactions of SLs as well as extracts from chicory with AChE. In a test of enzyme activity inhibition after introducing acetylcholine into the model system with SL, a stronger ability to inhibit the hydrolysis of the neurotransmitter was observed for lactucopicrin, which is one of the dominant SLs in chicory. The inhibition of enzyme activity was more efficient in the case of extracts, containing different enzyme ligands, exhibiting complementary patterns of binding the AChE active site. The study showed the high potential of using chicory to decrease the symptoms of Alzheimer's disease.


Asunto(s)
Cichorium intybus , Sesquiterpenos , Acetilcolinesterasa/metabolismo , Calorimetría , Cichorium intybus/química , Inhibidores de la Colinesterasa/farmacología , Lactonas/química , Lactonas/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología
6.
J Mol Struct ; 1262: 133019, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35431328

RESUMEN

Despite the ongoing vaccination against the life-threatening COVID-19, there is need for viable therapeutic interventions. The S-adenosyl-l-Methionine (SAM) dependent 2-O'-ribose methyltransferase (2'-O-MTase) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a therapeutic target against COVID-19 infection. In a bid to profile bioactive principles from natural sources, a custom-made library of 226 phytochemicals from African medicinal plants with especially anti-malarial activity was screened for direct interactions with SARS-CoV-2 2'-O-MTase (S2RMT) using molecular docking and molecular dynamics (MD) simulations as well as binding free energies methods. Based on minimal binding energy lower than sinefungin (a reference methyl-transferase inhibitor) and binding mode analysis at the catalytic site of S2RMT, a list of 26 hit phytocompounds was defined. The interaction of these phytocompounds was compared with the 2'-O-MTase of SARS-CoV and MERS-CoV. Among these compounds, the lead phytocompounds (LPs) viz: mulberrofuran F, 24-methylene cycloartenol, ferulate, 3-benzoylhosloppone and 10-hydroxyusambarensine interacted strongly with the conserved KDKE tetrad within the substrate binding pocket of the 2'-O-MTase of the coronavirus strains which is critical for substrate binding. The thermodynamic parameters analyzed from the MD simulation trajectories of the LPs-S2RMT complexes presented an eminent structural stability and compactness. These LPs demonstrated favorable druggability and in silico ADMET properties over a diverse array of molecular computing descriptors. The LPs show promising prospects in the disruption of S2RMT capping machinery in silico. However, these LPs should be validated via in vitro and in vivo experimental models.

7.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269938

RESUMEN

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Enoxaparina/farmacología , Furina/antagonistas & inhibidores , Espermina/análogos & derivados , Zeaxantinas/farmacología , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/metabolismo , COVID-19/transmisión , COVID-19/virología , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Enoxaparina/química , Enoxaparina/metabolismo , Furina/química , Furina/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteolisis , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Espermina/química , Espermina/metabolismo , Espermina/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Replicación Viral , Zeaxantinas/química , Zeaxantinas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-35082906

RESUMEN

The CLEC-2 receptor protein belongs to the C-type lectin superfamily of transmembrane receptors that have one or more C-type lectin-like domains. CLEC-2 is a physiological binding receptor of podoplanin (PDPN), which is expressed on specific tumour cell types and involved in tumour cell-induced platelet aggregation and tumour metastasis. CLEC-2 and podoplanin-expressing tumour cells interact to increase angiogenesis, tumour development, and metastasis. CLEC-2 is a hemi-immunoreceptor tyrosine-based activation motif (hemi-ITAM) receptor located on platelets and a subset of dendritic cells that are expressed constitutively. This molecule is secreted by activated platelets around tumours and has been shown to inhibit platelet aggregation and tumour metastasis in colon carcinoma by binding to the surface of tumour cells. Pharmacokinetic studies were carried using a DrugLiTo, and molecular docking was performed using AutoDock Tools 1.5.6 (ADT). Twenty-nine bioactive compounds were included in the study, and four of them, namely, piperine, dihydrocurcumin, bisdemethoxycurcumin, and demothoxycurcumin, showed potential antagonist properties against the target. The resultant best bioactive was compared with commercially available standard drugs. Further, validation of respective compounds with an intensive molecular dynamics simulation was performed using Schrödinger software. To the best of our knowledge, this is the first report on major bioactive found on clove as natural antagonists for CLEC-2 computationally. To further validate the bioactive and delimit the screening process of potential drugs against CLEC-2, in vitro and in vivo studies are needed to prove their efficacy.

9.
Food Chem ; 348: 129108, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33540300

RESUMEN

Monoamine oxidase A (MAO-A) is a major enzyme responsible for the deamination of neurotransmitters such as serotonin (5-HT) in the central nervous system. The decrease in 5-HT levels is accompanied by disorders at the affective and somatic levels, leading to depression and disorders of the satiety center. The aim of this study was to evaluate the degree of MAO-A inhibition by chlorogenic acids, as well as green, light-, and dark-roasted coffee extracts and bioactive compounds from beans of the species Coffea canephora and Coffea arabica. Data for analysis was obtained using isothermal titration calorimetry and molecular docking. The results showed that caffeine and ferulic acid, as well as green Robusta coffee, demonstrated the greatest inhibition of MAO-A activity, which may increase the bioavailability of serotonin. We believe that green coffee shows potential antidepressant activity by inhibiting MAO-A, and may be used for treating depression and potentially, type 2 diabetes.


Asunto(s)
Café/química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Serotonina/metabolismo , Cafeína/análisis , Ácido Clorogénico/análisis , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores de la Monoaminooxidasa/química , Semillas/química
10.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32586060

RESUMEN

Inhibition of cholinesterases remains one of a few available treatment strategies for neurodegenerative dementias such as Alzheimer's disease and related conditions. The current study was inspired by previous data on anticholinesterase properties of diterpenoids from Perovskia atriplicifolia and other Lamiaceae species. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition by the three new natural compounds-(1R,15R)-1-acetoxycryptotanshinone (1), (1R)-1-acetoxytanshinone IIA (2), and (15R)-1-oxoaegyptinone A (3)-as well as, new for this genus, isograndifoliol (4) were assessed. Three of these compounds exhibited profound inhibition of butyrylcholinesterase (BChE) and much weaker inhibition of acetylcholinesterase (AChE). All compounds (1-4) selectively inhibited BChE (IC50 = 2.4, 7.9, 50.8, and 0.9 µM, respectively), whereas only compounds 3 and 4 moderately inhibited AChE (IC50 329.8 µM and 342.9 µM). Molecular docking and in silico toxicology prediction studies were also performed on the active compounds. Natural oxygenated norditerpenoids from the traditional Central Asian medicinal plant P. atriplicifolia are selective BChE inhibitors. Their high potential makes them useful candidate molecules for further investigation as lead compounds in the development of a natural drug against dementia caused by neurodegenerative diseases.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Diterpenos/farmacología , Lamiaceae/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
11.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947859

RESUMEN

Receptor activator of nuclear factor-κB ligand (RANKL) is a cytokine responsible for bone resorption. It binds its receptor RANK, which activates osteoporosis. High levels of osteoprotegerin (OPG) competitively binding RANKL limit formation of ligand-receptor complexes and enable bone mass maintenance. The new approach to prevent osteoporosis is searching for therapeutics that can bind RANKL and support OPG function. The aim of the study was to verify the hypothesis that isoflavones can form complexes with RANKL limiting binding of the cytokine to its receptor. Interactions of five isoflavones with RANKL were investigated by isothermal titration calorimetry (ITC), by in silico docking simulation and on Saos-2 cells. Daidzein and biochanin A showed the highest affinity for RANKL. Among studied isoflavones coumestrol, formononetin and biochanin A showed the highest potential for Saos-2 mineralization and were able to regulate the expression of RANKL and OPG at the mRNA levels, as well as osteogenic differentiation markers: alkaline phosphatase (ALP), collagen type 1, and Runt-related transcription factor 2 (Runx2). Comparison of the osteogenic activities of isoflavones showed that the use of physicochemical techniques such as ITC or in silico docking are good tools for the initial selection of substances showing a specific bioactivity.


Asunto(s)
Conservadores de la Densidad Ósea , Isoflavonas , Simulación del Acoplamiento Molecular , Osteogénesis/efectos de los fármacos , Osteoporosis , Ligando RANK , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/farmacología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Isoflavonas/química , Isoflavonas/farmacología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Ligando RANK/agonistas , Ligando RANK/química , Ligando RANK/metabolismo
12.
Front Chem ; 8: 590263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425850

RESUMEN

The rapidly developing pandemic, known as coronavirus disease 2019 (COVID-19) and caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently spread across 213 countries and territories. This pandemic is a dire public health threat-particularly for those suffering from hypertension, cardiovascular diseases, pulmonary diseases, or diabetes; without approved treatments, it is likely to persist or recur. To facilitate the rapid discovery of inhibitors with clinical potential, we have applied ligand- and structure-based computational approaches to develop a virtual screening methodology that allows us to predict potential inhibitors. In this work, virtual screening was performed against two natural products databases, Super Natural II and Traditional Chinese Medicine. Additionally, we have used an integrated drug repurposing approach to computationally identify potential inhibitors of the main protease of SARS-CoV-2 in databases of drugs (both approved and withdrawn). Roughly 360,000 compounds were screened using various molecular fingerprints and molecular docking methods; of these, 80 docked compounds were evaluated in detail, and the 12 best hits from four datasets were further inspected via molecular dynamics simulations. Finally, toxicity and cytochrome inhibition profiles were computationally analyzed for the selected candidate compounds.

13.
Molecules ; 24(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703341

RESUMEN

Culinary herbs and spices are widely used as a traditional medicine in the treatment of diabetes and its complications, and there are several scientific studies in the literature supporting the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive compounds of these herbs and spices and their mechanisms of action. The aim of this study was to use inverse virtual screening to provide insights into the bioactive compounds of common herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes. In this study, a library of over 2300 compounds derived from 30 common herbs and spices were screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900 compounds from the herbs and spices library were observed to have potential anti-diabetic activity and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched with potential anti-diabetic compounds. A large percentage of the compounds were observed to be potential polypharmacological agents regulating three or more anti-diabetic drug targets and included compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron and glabridin from liquorice. The major targets identified for the herbs and spices compounds were dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1 (NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha (PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4 (RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17 protein targets. In most cases more than one compound within a given plant could potentially regulate a particular protein target. It was observed that through this multi-compound-multi target regulation of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together with the known scientific literature, indicated that the anti-diabetic potential of common culinary herbs and spices was the result of the collective action of more than one bioactive compound regulating and restoring several dysregulated and interconnected diabetic biological processes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Inhibidores Enzimáticos , Hipoglucemiantes , Plantas Medicinales/química , Especias , Diabetes Mellitus/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico
14.
Molecules ; 24(10)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137754

RESUMEN

Medicinal plants containing complex mixtures of several compounds with various potential beneficial biological effects are attractive treatment interventions for a complex multi-faceted disease like diabetes. In this study, compounds identified from African medicinal plants were evaluated for their potential anti-diabetic activity. A total of 867 compounds identified from over 300 medicinal plants were screened in silico with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) against 17 known anti-diabetic drug targets. Four hundred and thirty compounds were identified as potential inhibitors, with 184 plants being identified as the sources of these compounds. The plants Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans, Dioscorea dregeana, Dodonaea angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus comosus, Mondia whitei, Pelargonium sidoides, Typha capensis, Vinca minor, Voacanga Africana, and Xysmalobium undulatum were identified as new sources rich in compounds with a potential anti-diabetic activity. The major targets identified for the natural compounds were aldose reductase, hydroxysteroid 11-beta dehydrogenase 1, dipeptidyl peptidase 4, and peroxisome proliferator-activated receptor delta. More than 30% of the compounds had five or more potential targets. A hierarchical clustering analysis coupled with a maximum common substructure analysis revealed the importance of the flavonoid backbone for predicting potential activity against aldose reductase and hydroxysteroid 11-beta dehydrogenase 1. Filtering with physiochemical and the absorption, distribution, metabolism, excretion and toxicity (ADMET) descriptors identified 28 compounds with favorable ADMET properties. The six compounds-crotofoline A, erythraline, henningsiine, nauclefidine, vinburnine, and voaphylline-were identified as novel potential multi-targeted anti-diabetic compounds, with favorable ADMET properties for further drug development.


Asunto(s)
Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Internet , Plantas Medicinales/química , Interfaz Usuario-Computador , Disponibilidad Biológica , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular
15.
J Chem Inf Model ; 59(6): 2805-2817, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31074975

RESUMEN

BRUSELAS (balanced rapid and unrestricted server for extensive ligand-aimed screening) is a novel, highly efficient web software architecture for 3D shape and pharmacophore searches in off the cuff libraries. A wide panel of shape and pharmacophore similarity algorithms are combined to avoid unbiased results while yielding consensus scoring functions. To evaluate its reliability, BRUSELAS was tested against other similar servers (e.g., USR-VS, SwissSimilarity, ChemMapper) to search for potential antidiabetic drugs. A web tool is developed for users to customize their tasks and is accessible free of any charge or login at http://bio-hpc.eu/software/Bruselas . Source code is available on request.


Asunto(s)
Bases de Datos Farmacéuticas , Evaluación Preclínica de Medicamentos/métodos , Programas Informáticos , Antimaláricos/farmacología , Hipoglucemiantes/farmacología , Internet , Ligandos , Factores de Tiempo , Interfaz Usuario-Computador
16.
Chem Biodivers ; 16(5): e1900017, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30891904

RESUMEN

Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl- and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50 =141.60±3.39 µm) and hyuganin C (IC50 =38.86±1.69 µm) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50 =46.58±0.91 µm) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.


Asunto(s)
Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Cumarinas/química , Floroglucinol/análogos & derivados , Terpenos/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Apiaceae/química , Sitios de Unión , Butirilcolinesterasa/química , Dominio Catalítico , Cumarinas/aislamiento & purificación , Simulación del Acoplamiento Molecular , Floroglucinol/química , Extractos Vegetales/química , Relación Estructura-Actividad Cuantitativa , Termodinámica
17.
Curr Comput Aided Drug Des ; 15(1): 6-28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30338743

RESUMEN

BACKGROUND: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. OBJECTIVE: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Asunto(s)
Simulación por Computador , Aprendizaje Profundo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Relación Estructura-Actividad
18.
Future Med Chem ; 10(22): 2641-2658, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30499744

RESUMEN

Virtual screening has become a widely used technique for helping in drug discovery processes. The key to this success is its ability to aid in the identification of novel bioactive compounds by screening large molecular databases. Several web servers have emerged in the last few years supplying platforms to guide users in screening publicly accessible chemical databases in a reasonable time. In this review, we discuss a representative set of online virtual screening servers and their underlying similarity algorithms. Other related topics, such as molecular representation or freely accessible databases are also treated. The most relevant contributions to this review arise from critical discussions concerning the pros and cons of servers and algorithms, and the challenges that future works must solve in a virtual screening framework.


Asunto(s)
Algoritmos , Internet , Bases de Datos Factuales , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Ligandos
19.
Molecules ; 23(10)2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30261641

RESUMEN

Actin functions are crucial for the ability of the cell to execute dynamic cytoskeleton reorganization and movement. Nutraceuticals that form complexes with actin and reduce its polymerization can be used in cancer therapy to prevent cell migration and metastasis of tumors. The aim of this study was to evaluate the ability of isoflavones to form complexes with actin. Docking simulation and isothermal titration calorimetry were used for this purpose. The formation of complexes by hydrogen bonds, hydrophobic and π-π interactions was demonstrated. Interactions occurred at the ATP binding site, which may limit the rotation of the actin molecule observed during polymerization and also at the site responsible for contacts during polymerization, reducing the ability of the molecule to form filaments. The greatest therapeutic potential was demonstrated by isoflavones occurring in red clover sprouts, i.e., biochanin A and formononetin, being methoxy derivatives of genistein and daidzein.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/efectos de los fármacos , Suplementos Dietéticos , Isoflavonas/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Trifolium/química , Humanos , Neoplasias/patología , Células Tumorales Cultivadas
20.
Food Res Int ; 109: 268-277, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29803450

RESUMEN

In patients with Alzheimer's disease (AD), elevated levels of butyrylcholinesterase (BChE) are observed. The enzyme hydrolyses acetylcholine, which shows deficiency in these patients. Therefore, BChE inhibitors are used in the treatment of Alzheimer's disease, especially synthetic ones, showing side effects with long-term intake. The sources of natural BChE inhibitors are constantly being sought. Coffee brews have been shown to reduce the symptoms of AD in epidemiological studies. However, the ability to inhibit BChE activity has not been investigated, depending on the degree of coffee roasting. The study was aimed at determining the interactions between BChE and the bioactive compounds of coffee and their ability to inhibit the activity of BChE. A comparison of individual bioactive compounds of coffee as well as extracts obtained from two main species, Arabica and Robusta, and additionally from different degrees of roasting was made. Two models were used: isothermal titration calorimetry (ITC) and molecular docking simulation. ITC analysis showed strong interactions of ferulic and dihydrocaffeic acids with BChE. These compounds are the metabolites of the chlorogenic acids, including both mono- and diesters of caffeic acid with quinic acid. Docking simulation showed their strong hydrophobic interaction with BChE, stabilized by hydrogen bonds and pi-pi interactions. After introducing acetylcholine into the model system, the strongest ability to inhibit hydrolytic activity of BChE was again observed for ferulic acid and additionally for 3-caffeoylquinic acid, and among coffee brews the most active were light roasted Arabica and green Robusta. The study was based on the physiological concentrations of coffee components, so the potential therapeutic effect of coffee infusions was proved.


Asunto(s)
Butirilcolinesterasa/metabolismo , Calorimetría/métodos , Ácido Clorogénico/farmacología , Inhibidores de la Colinesterasa/farmacología , Coffea/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Sitios de Unión , Butirilcolinesterasa/química , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/metabolismo , Inhibidores de la Colinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/metabolismo , Manipulación de Alimentos/métodos , Calor , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA