Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Inflamm Res ; 15: 3285-3304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676971

RESUMEN

Background and Purpose: Celastrol (CS) is a major active ingredient of the Chinese/Asian herb Tripterygium wilfordii that is frequently used as phytomedicine to treat inflammation and autoimmune diseases. We showed before that short-term exposure to CS (1 µM) favorably impacts the biosynthesis of inflammation-related lipid mediators (LM) in human polarized macrophages by modulating the activities of different lipoxygenases (LOXs). However, whether CS regulates the expression of LOXs and other related LM-biosynthetic enzymes during macrophage polarization is unknown. Here, we investigated how CS affects LM-biosynthetic enzyme expression on the protein level and studied concomitant LM signature profiles during polarization of human monocyte-derived macrophages (MDM) towards M1- and M2-like phenotypes. Methods and Results: We used LM metabololipidomics to study the long-term effects of CS on LM profile signatures after manipulation of human monocyte-derived macrophages (MDM) during polarization. Exposure of MDM to low concentrations of CS (ie, 0.2 µM) during polarization to an inflammatory M1 phenotype potently suppressed the formation of pro-inflammatory cyclooxygenase (COX)- and 5-LOX-derived LM, especially prostaglandin (PG)E2. Notably, gene and enzyme expression of COX-2 and microsomal PGE2 synthase (mPGES)-1 as well as M1 markers were strongly decreased by CS during M1-MDM polarization, along with impaired activation of nuclear factor-κB and p38 mitogen-activated protein kinase. During IL-4-induced M2 polarization, CS decreased the capacity of the resulting M2-MDM to generate pro-inflammatory COX and 5-LOX products as well but it also reduced the formation of 12/15-LOX products and specialized pro-resolving mediators, without affecting the levels of liberated fatty acid substrates. Conclusion: Depending on the timing and concentration, CS not only favorably affects LOX activities in macrophages but also the expression of LM-biosynthetic enzymes during macrophage polarization connected to changes of inflammation-related LM which might be of relevance for potential application of CS to treat inflammatory disorders.

2.
Acta Pharm Sin B ; 11(6): 1629-1647, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34221873

RESUMEN

Chronic inflammation results from excessive pro-inflammatory signaling and the failure to resolve the inflammatory reaction. Lipid mediators orchestrate both the initiation and resolution of inflammation. Switching from pro-inflammatory to pro-resolving lipid mediator biosynthesis is considered as efficient strategy to relieve chronic inflammation, though drug candidates exhibiting such features are unknown. Starting from a library of Vietnamese medical plant extracts, we identified isomers of the biflavanoid 8-methylsocotrin-4'-ol from Dracaena cambodiana, which limit inflammation by targeting 5-lipoxygenase and switching the lipid mediator profile from leukotrienes to specialized pro-resolving mediators (SPM). Elucidation of the absolute configurations of 8-methylsocotrin-4'-ol revealed the 2S,γS-isomer being most active, and molecular docking studies suggest that the compound binds to an allosteric site between the 5-lipoxygenase subdomains. We identified additional subordinate targets within lipid mediator biosynthesis, including microsomal prostaglandin E2 synthase-1. Leukotriene production is efficiently suppressed in activated human neutrophils, macrophages, and blood, while the induction of SPM biosynthesis is restricted to M2 macrophages. The shift from leukotrienes to SPM was also evident in mouse peritonitis in vivo and accompanied by a substantial decrease in immune cell infiltration. In summary, we disclose a promising drug candidate that combines potent 5-lipoxygenase inhibition with the favorable reprogramming of lipid mediator profiles.

3.
Biomolecules ; 11(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067705

RESUMEN

Tripterygium wilfordii glycosides (TWG) is a traditional Chinese medicine with effectiveness against rheumatoid arthritis (RA), supported by numerous clinical trials. Lipid mediators (LM) are biomolecules produced from polyunsaturated fatty acids mainly by cyclooxygenases (COX) and lipoxygenases (LOX) in complex networks which regulate inflammation and immune responses and are strongly linked to RA. The mechanism by which TWG affects LM networks in RA treatment remains elusive. Employing LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed striking modulation of LM pathways by TWG in human monocyte-derived macrophage (MDM) phenotypes. In inflammatory M1-MDM, TWG (30 µg/mL) potently suppressed agonist-induced formation of 5-LOX products which was confirmed in human PMNL and traced back to direct inhibition of 5-LOX (IC50 = 2.9 µg/mL). TWG also efficiently blocked thromboxane formation in M1-MDM without inhibiting other prostanoids and COX enzymes. Importantly, in anti-inflammatory M2-MDM, TWG (30 µg/mL) induced pronounced formation of specialized pro-resolving mediators (SPM) and related 12/15-LOX-derived SPM precursors, without COX and 5-LOX activation. During MDM polarization, TWG (1 µg/mL) decreased the capacity to generate pro-inflammatory 5-LOX and COX products, cytokines and markers for M1 phenotypes. Together, suppression of pro-inflammatory LM but SPM induction may contribute to the antirheumatic properties of TWG.


Asunto(s)
Antirreumáticos/administración & dosificación , Araquidonato 5-Lipooxigenasa/metabolismo , Glicósidos/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Tripterygium/química , Células A549 , Antirreumáticos/farmacología , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Lipidómica/métodos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Prostaglandinas/metabolismo , Espectrometría de Masas en Tándem , Tromboxanos
4.
Molecules ; 25(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326068

RESUMEN

Traditional folk medicine in Sri Lanka is mostly based on plants and plant-derived products, however, many of these medicinal plant species are scientifically unexplored. Here, we evaluated the anti-inflammatory and antimicrobial potency of 28 different extracts prepared from seven popular medicinal plant species employed in Sri Lanka. The extracts were subjected to cell-based and cell-free assays of 5-lipoxygenase (5-LO), microsomal prostaglandin E2 synthase (mPGES)-1, and nitric oxide (NO) scavenging activity. Moreover, antibacterial and disinfectant activities were assessed. Characterization of secondary metabolites was achieved by gas chromatography coupled to mass spectrometric (GC-MS) analysis. n-Hexane- and dichloromethane-based extracts of Garcinia cambogia efficiently suppressed 5-LO activity in human neutrophils (IC50 = 0.92 and 1.39 µg/mL), and potently inhibited isolated human 5-LO (IC50 = 0.15 and 0.16 µg/mL) and mPGES-1 (IC50 = 0.29 and 0.49 µg/mL). Lipophilic extracts of Pothos scandens displayed potent inhibition of mPGES-1 only. A methanolic extract of Ophiorrhiza mungos caused significant NO scavenging activity. The lipophilic extracts of G. cambogia exhibited prominent antibacterial and disinfectant activities, and GC-MS analysis revealed the presence of fatty acids, sesquiterpenes and other types of secondary metabolites. Together, our results suggest the prospective utilization of G. cambogia as disinfective agent with potent anti-inflammatory properties.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Humanos , Concentración 50 Inhibidora , Medicina Tradicional , Óxido Nítrico/metabolismo , Fitoquímicos/química , Fitoquímicos/farmacología , Prostaglandina-E Sintasas/metabolismo , Sri Lanka
5.
ChemMedChem ; 15(6): 481-489, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32022480

RESUMEN

Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO), two key enzymes involved in pro-inflammatory eicosanoid biosynthesis, represents a new strategy for treating inflammatory disorders. Herein we report the discovery of 2,4-thiazolidinedione-based mPGES-1/5-LO dual inhibitors following a multidisciplinary protocol, involving virtual combinatorial screening, chemical synthesis, and validation of the biological activities for the selected compounds. Following the multicomponent-based chemical route for the decoration of the 2,4-thiazolidinedione core, a large library of virtual compounds was built (∼2.0×104 items) and submitted to virtual screening. Nine selected molecules were synthesized and biologically evaluated, disclosing among them four compounds able to reduce the activity of both enzymes in the mid- and low- micromolar range of activities. These results are of interest for further expanding the chemical diversity around the 2,4-thiazolidinedione central core, facilitating the identification of novel anti-inflammatory agents endowed with a promising and safer pharmacological profile.


Asunto(s)
Antiinflamatorios/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Prostaglandina-E Sintasas/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Células A549 , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Prostaglandina-E Sintasas/metabolismo , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
6.
Phytomedicine ; 60: 152987, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31257118

RESUMEN

BACKGROUND: Urinary tract infections are among the most common types of infections and give rise to inflammation with pain as one of the main symptoms. The herbal medicinal product Canephron® N contains BNO 2103, a defined mixture of pulverized rosemary leaves, centaury herb, and lovage root, and has been used in the treatment of urinary tract infections for more than 25 years. PURPOSE: To test the hypothesis that BNO 2103 reduces pain in cystitis and prostatitis by virtue of anti-inflammatory properties, and to reveal potential mechanisms underlying the anti-inflammatory features. STUDY DESIGN: BNO 2103 was studied for anti-inflammatory and analgesic properties in three animal models in vivo, and the mode of action underlying the anti-inflammatory features was investigated in human leukocytes and cell-free assays in vitro. METHODS: To assess the anti-inflammatory and analgesic efficacy of BNO 2103 we employed cyclophosphamide-induced cystitis and carrageenan-induced prostatitis in rats, and zymosan-induced peritonitis in mice. Human neutrophils and monocytes as well as isolated human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1-containing microsomes were utilized to assess inhibition of leukotriene and/or prostaglandin E2 production by HPLC and/or ELISA. RESULTS: When given orally, BNO 2103 reduced inflammation and hyperalgesia in experimental cystitis in rats, while individual components of BNO 2103 also reduced hyperalgesia. Furthermore, BNO 2103 reduced hyperalgesia in rats with carrageenan-induced prostatitis. Cell-based and cell-free studies implicate inhibition of prostaglandin E2 and leukotriene B4 biosynthesis as potential mechanisms underlying the analgesic and anti-inflammatory effects. CONCLUSION: Our data support the hypothesis that BNO 2103 reduces pain by virtue of its anti-inflammatory properties, possibly related to suppression of prostaglandin E2 and leukotriene B4 formation, and suggest that this combination has the potential to treat clinical symptoms such as inflammatory pain. Thus BNO 2103 may represent an alternative to reduce the use of antibiotics in urinary tract infections.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Cistitis/complicaciones , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Prostatitis/complicaciones , Analgésicos/química , Animales , Antiinflamatorios/química , Carragenina/efectos adversos , Ciclofosfamida/efectos adversos , Cistitis/inducido químicamente , Medicamentos Herbarios Chinos , Femenino , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Inflamación/tratamiento farmacológico , Inflamación/etiología , Masculino , Ratones , Monocitos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Dolor/etiología , Extractos Vegetales/química , Prostatitis/inducido químicamente , Ratas , Ratas Sprague-Dawley
7.
Phytochemistry ; 144: 52-57, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28888145

RESUMEN

Lycium barbarum (Solanaceae), long known to the traditional Chinese medicine because of its many health-promoting effects, has of late spread widely across the Western hemisphere, mainly on account of the nutritional richness in vitamins, minerals and antioxidant metabolites of its fruits. Data on bioactive metabolites from fruits and leaves, which are commonly consumed in soups and salads, are scarce and sometimes even contradictory. By means of NMR, the present study identified the specialised products contained in an Italian cultivar of L. barbarum. Kaempeferol, caffeic acid, 3,4,5-trihydroxycinnamic acid and 5-hydroxyferulic acid were found in fresh fruits; rutin and chlorogenic acid were detected in leaves and flowers; also, a previously undescribed N,N-dicaffeoylspermidine derivative was identified in flowers, while N-feruloyltyramine derivatives, for which interesting anti-inflammatory properties have been reported, turned out to be the major bioactive molecules in stems. The plethora of the detected bioactive molecules amplifies the nutraceutical value of berries and leaves and prompts the exploitation of L. barbarum flowers and pruned stems as sources of beneficial compounds.


Asunto(s)
Ácidos Cafeicos/análisis , Ácido Clorogénico/análisis , Ácidos Cumáricos/análisis , Inhibidores Enzimáticos/análisis , Lycium/química , Rutina/análisis , Tiramina/análogos & derivados , Araquidonato 5-Lipooxigenasa/metabolismo , Ácidos Cafeicos/metabolismo , Ácidos Cafeicos/farmacología , Línea Celular Tumoral , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Flores/química , Frutas/química , Humanos , Italia , Espectroscopía de Resonancia Magnética , Medicina Tradicional China , Hojas de la Planta/química , Rutina/metabolismo , Rutina/farmacología , Tiramina/análisis , Tiramina/metabolismo , Tiramina/farmacología
8.
J Clin Invest ; 127(8): 3167-3176, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28737505

RESUMEN

Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO-activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor-induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.


Asunto(s)
Andrógenos/metabolismo , Leucotrienos/biosíntesis , Factores Sexuales , Testosterona/administración & dosificación , Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Dihidrotestosterona/metabolismo , Femenino , Humanos , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Leucocitos/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Masculino , Ratones , Pirroles/administración & dosificación , Ratas , Ratas Wistar , Sulindac/administración & dosificación , Sulindac/análogos & derivados , Testosterona/metabolismo
9.
J Nat Prod ; 79(3): 590-7, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26918635

RESUMEN

Humulus lupulus (hop plant) has long been used in traditional medicine as a sedative and antimicrobial agent. More recently, attention has been devoted to the phytoestrogenic activity of the plant extracts as well as to the anti-inflammatory and chemopreventive properties of the prenylated chalcones present. In this study, an Italian sample of H. lupulus cv. "Cascade" has been investigated and three new compounds [4-hydroxycolupulone (6), humudifucol (7) and cascadone (8)] have been purified and identified by means of NMR spectroscopy along with four known metabolites. Notably, humudifucol (7) is the first prenylated dimeric phlorotannin discovered in nature. Because structurally related phloroglucinols from natural sources were found previously to inhibit microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), the isolated compounds were evaluated for their bioactivity against these pro-inflammatory target proteins. The prenylated chalcone xanthohumol inhibited both enzymes at low µM concentrations.


Asunto(s)
Chalconas/aislamiento & purificación , Chalconas/farmacología , Humulus/química , Fitoestrógenos/aislamiento & purificación , Fitoestrógenos/farmacología , Plantas Medicinales/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Araquidonato 5-Lipooxigenasa , Chalconas/química , Flavonoides , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Italia , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fitoestrógenos/química , Extractos Vegetales/química , Polifenoles/química , Prenilación , Propiofenonas , Prostaglandina-E Sintasas
10.
Mol Nutr Food Res ; 58(3): 457-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24123777

RESUMEN

SCOPE: Colorectal cancer is an important health problem across the world. Here, we investigated the possible antiproliferative/proapoptotic effects of bromelain (from the pineapple stem Ananas comosus L., family Bromeliaceae) in a human colorectal carcinoma cell line and its potential chemopreventive effect in a murine model of colon cancer. METHODS AND RESULTS: Proliferation and apoptosis were evaluated in human colon adenocarcinoma (Caco-2) cells by the (3) H-thymidine incorporation assay and caspase 3/7 activity measurement, respectively. Extracellular signal-related kinase (ERK) and Akt expression were evaluated by Western blot analysis, reactive oxygen species production by a fluorimetric method. In vivo, bromelain was evaluated using the azoxymethane murine model of colon carcinogenesis. Bromelain reduced cell proliferation and promoted apoptosis in Caco-2 cells. The effect of bromelain was associated to downregulation of pERK1/2/total, ERK, and pAkt/Akt expression as well as to reduction of reactive oxygen species production. In vivo, bromelain reduced the development of aberrant crypt foci, polyps, and tumors induced by azoxymethane. CONCLUSION: Bromelain exerts antiproliferative and proapoptotic effects in colorectal carcinoma cells and chemopreventive actions in colon carcinogenesis in vivo. Bromelain-containing foods and/or bromelain itself may represent good candidates for colorectal cancer chemoprevention.


Asunto(s)
Ananas/química , Bromelaínas/farmacología , Neoplasias del Colon/prevención & control , Animales , Anticarcinógenos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones Endogámicos ICR , Tallos de la Planta/química , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA