Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioelectromagnetics ; 43(4): 218-224, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35476263

RESUMEN

Radiofrequency radiation (RFR) was classified as a "possible" human carcinogen in 2011, which caused great public concern. A carcinogenicity study by the National Toxicology Program (NTP) found Code Division Multiple Access-and Global System for Mobile Communications-modulated mobile phone RFR to be carcinogenic to the brain and heart of male rats. As part of an investigation of mobile phone carcinogenesis, and to verify the NTP study results, a 5-year collaborative animal project was started in Korea and Japan in 2019. An international animal study of this type has two prerequisites: use of the same study protocol and the same RF-exposure system. This article discusses our experience in the design of this global study on radiofrequency electromagnetic fields (RF-EMFs).© 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Asunto(s)
Teléfono Celular , Ondas de Radio , Animales , Encéfalo , Carcinogénesis , Campos Electromagnéticos , Masculino , Ratas
2.
Bioelectromagnetics ; 42(3): 191-199, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33527465

RESUMEN

The placenta protects the fetus against excessive stress-associated maternal cortisol during pregnancy. We studied whether exposure to radiofrequency electromagnetic field (RF-EMF) radiation during pregnancy can cause changes in dams and their placentas. Pregnant Sprague-Dawley rats were divided into cage-control, sham-exposed, and RF-exposed groups. They were exposed to RF-EMF signals at a whole-body specific absorption rate of 4 W/kg for 8 h/day from gestational Day 1 to 19. Levels of cortisol in the blood, adrenal gland, and placenta were measured by enzyme-linked immunosorbent assay. Levels of adrenocorticotropic hormone and corticotropin-releasing hormone were monitored in maternal blood. Expression levels of placental 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) messenger RNA (mRNA) were measured by reverse transcription polymerase chain reaction. Morphological changes in the placenta were analyzed using hematoxylin and eosin staining. Fetal parts of the placenta were measured using Zen 2.3 blue edition software. Maternal cortisol in circulating blood (RF: 230 ± 24.6 ng/ml and Sham: 156 ± 8.3 ng/ml) and the adrenal gland (RF: 58.3 ± 4.5 ng/ml and Sham: 30 ± 3.8 ng/ml) was significantly increased in the RF-exposed group (P < 0.05). Placental cortisol was stably maintained, and the level of placental 11ß-HSD2 mRNA expression was not changed in the RF-exposed group. RF-EMF exposure during pregnancy caused a significant elevation of cortisol levels in circulating blood; however, no changes in the placental barrier were observed in pregnant rats. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.


Asunto(s)
Campos Electromagnéticos , Placenta , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2 , Animales , Campos Electromagnéticos/efectos adversos , Femenino , Hidrocortisona , Embarazo , Ratas , Ratas Sprague-Dawley
3.
Bioelectromagnetics ; 41(2): 104-112, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31828817

RESUMEN

Exposure to a radiofrequency (RF) signal at a specific absorption rate (SAR) of 4 W/kg can increase the body temperature by more than 1 °C. In this study, we investigated the effect of anesthesia on the body temperature of rats after exposure to an RF electromagnetic field at 4 W/kg SAR. We also evaluated the influence of body mass on rats' body temperature. Rats weighing 225 and 339 g were divided into sham- and RF-exposure groups. Each of the resulting four groups was subdivided into anesthetized and non-anesthetized groups. The free-moving rats in the four RF-exposure groups were subjected to a 915 MHz RF identification signal at 4 W/kg whole-body SAR for 8 h. The rectal temperature was measured at 1-h intervals during RF exposure using a small-animal temperature probe. The body temperatures of non-anesthetized, mobile 225 and 339 g rats were not significantly affected by exposure to an RF signal. However, the body temperatures of anesthetized 225 and 339 g rats increased by 1.9 °C and 3.3 °C from baseline at 5 and 6 h of RF exposure, respectively. Three of the five 339 g anesthetized and exposed rats died after 6 h of RF exposure. Thus, anesthesia and body mass influenced RF exposure-induced changes in the body temperature of rats. Bioelectromagnetics. 2020;41:104-112. © 2019 Bioelectromagnetics Society.


Asunto(s)
Anestesia , Temperatura Corporal/fisiología , Campos Electromagnéticos/efectos adversos , Animales , Radiación Electromagnética , Masculino , Ondas de Radio/efectos adversos , Ratas Sprague-Dawley
4.
Bioelectromagnetics ; 39(1): 68-76, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29171038

RESUMEN

We investigated whether exposure to the 915 MHz radiofrequency identification (RFID) signal affected circulating blood cells in rats. Sprague-Dawley rats were exposed to RFID at a whole-body specific absorption rate of 2 W/kg for 8 h per day, 5 days per week, for 2 weeks. Complete blood counts were performed after RFID exposure, and the CD4+ /CD8+ ratio was determined by flow cytometry. The number of red blood cells (RBCs) and the values of hemoglobin, hematocrit, and RBC indices were increased in the RFID-exposed group compared with those in the cage-control and sham-exposed groups (P < 0.05). However, the RBCs and platelet numbers were within normal physiologic response ranges. The number of white blood cells, including lymphocytes, was decreased in RFID-exposed rats. However, there was no statistically significant difference between the sham-exposed and RFID-exposed groups in terms of T-cell counts or CD4+ /CD8+ ratio (P > 0.05). Although the number of circulating blood cells was significantly altered by RFID exposure at a whole-body specific absorption rate of 2 W/kg for 2 weeks, these changes do not necessarily indicate that RFID exposure is harmful, as they were within the normal physiological response range. Bioelectromagnetics. 39:68-76, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Células Sanguíneas/efectos de la radiación , Campos Electromagnéticos/efectos adversos , Dispositivo de Identificación por Radiofrecuencia , Animales , Células Sanguíneas/citología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de la radiación , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de la radiación , Recuento de Células , Eritrocitos/citología , Eritrocitos/efectos de la radiación , Masculino , Ratas , Ratas Sprague-Dawley , Irradiación Corporal Total/efectos adversos
5.
Bioelectromagnetics ; 37(6): 391-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27434853

RESUMEN

The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF-EMF) on health. In the present study, we investigated whether RF-EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aß)-related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF-EMF- and sham-exposed groups, eight mice per group). The RF-EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y-maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non-spatial memory following 3-month RF-EMF exposure. Furthermore, Aß deposition and APP and carboxyl-terminal fragment ß (CTFß) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aß peptides were also investigated. In behavioral tests, mice that were exposed to RF-EMF for 3 months did not exhibit differences in spatial and non-spatial memory compared to the sham-exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF-EMF did not alter APP and CTFß levels or Aß deposition in the brains of the 5xFAD mice. These findings indicate that 3-month RF-EMF exposure did not affect Aß-related memory impairment or Aß accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391-399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Memoria/efectos de la radiación , Ondas de Radio/efectos adversos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Humanos , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Transporte de Proteínas/efectos de la radiación , Proteolisis/efectos de la radiación
6.
Curr Alzheimer Res ; 12(5): 481-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017559

RESUMEN

The involvement of radiofrequency electromagnetic fields (RF-EMF) in the neurodegenerative disease, especially Alzheimer's disease (AD), has received wide consideration, however, outcomes from several researches have not shown consistency. In this study, we determined whether RF-EMF influenced AD pathology in vivo using Tg-5xFAD mice as a model of AD-like amyloid ß (Aß) pathology. The transgenic (Tg)-5xFAD and wild type (WT) mice were chronically exposed to RF-EMF for 8 months (1950 MHz, SAR 5W/kg, 2 hrs/day, 5 days/week). Notably, chronic RFEMF exposure significantly reduced not only Aß plaques, APP, and APP carboxyl-terminal fragments (CTFs) in whole brain including hippocampus and entorhinal cortex but also the ratio of Aß42 and Aß40 peptide in the hippocampus of Tg-5xFAD mice. We also found that parenchymal expression of ß-amyloid precursor protein cleaving enzyme 1(BACE1) and neuroinflammation were inhibited by RF-EMF exposure in Tg-5xFAD. In addition, RF-EMF was shown to rescue memory impairment in Tg-5xFAD. Moreover, gene profiling from microarray data using hippocampus of WT and Tg- 5xFAD following RF-EMF exposure revealed that 5 genes (Tshz2, Gm12695, St3gal1, Isx and Tll1), which are involved in Aß, are significantly altered inTg-5xFAD mice, exhibiting different responses to RF-EMF in WT or Tg-5xFAD mice; RF-EMF exposure in WT mice showed similar patterns to control Tg-5xFAD mice, however, RF-EMF exposure in Tg- 5xFAD mice showed opposite expression patterns. These findings indicate that chronic RF-EMF exposure directly affects Aß pathology in AD but not in normal brain. Therefore, RF-EMF has preventive effects against AD-like pathology in advanced AD mice with a high expression of Aß, which suggests that RF-EMF can have a beneficial influence on AD.


Asunto(s)
Enfermedad de Alzheimer/terapia , Magnetoterapia/métodos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Astrocitos/patología , Astrocitos/fisiología , Reacción de Prevención/fisiología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/terapia , Ratones Transgénicos , Microglía/patología , Microglía/fisiología , Actividad Motora/fisiología , Presenilina-1/genética , Presenilina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA