Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Neurosci ; 24(7): 913-929, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34002087

RESUMEN

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.


Asunto(s)
Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético/fisiología , Homeostasis/fisiología , Hipotálamo/citología , Ratones , Ratones Transgénicos , Neuronas/citología
2.
Cell Rep ; 25(2): 383-397.e10, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304679

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Homeostasis , Mitocondrias/patología , Neuronas/metabolismo , Obesidad/prevención & control , Fosforilación Oxidativa , Proopiomelanocortina/metabolismo , Animales , Factor Inductor de la Apoptosis/fisiología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Intolerancia a la Glucosa , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Mitocondrias/metabolismo , Neuronas/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología
3.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26359991

RESUMEN

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Asunto(s)
Regulación del Apetito , Hipotálamo/metabolismo , Obesidad/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Cell ; 156(3): 495-509, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24462248

RESUMEN

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Asunto(s)
Dieta Alta en Grasa , Hiperglucemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Lactancia , Obesidad/metabolismo , Animales , Axones/metabolismo , Femenino , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Embarazo , Proopiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA