Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542069

RESUMEN

Rosmarinic acid is a well-known natural antioxidant and anti-inflammatory compound, and it is one of the polyphenolic compounds found in comfrey plants. Comfrey root also contains allantoin, which helps with new skin regeneration. This study aimed to investigate the healing and skin regeneration process of skin wounds in Wistar rats using creams based on comfrey extract and to correlate the results with active compounds in the extract. The obtained results showed that comfrey root is rich in bioactive compounds, including allantoin, salvianolic acid, and rosmarinic acid, which are known for their great free radical scavenging activity, and the high antioxidant activity of the extract may be mainly due to these compounds. The obtained extract has an antimicrobial effect on Staphylococcus aureus (1530.76/382.69), Escherichia coli (6123.01/6123.01), and Pseudomonas aeruginosa (6123.01/6123.01). The macroscopic evaluation and the histological analysis of the skin defects 14 days after the intervention showed faster healing and complete healing in the skin excisions treated with oil-in-water cream with 20% extract of comfrey as the active ingredient.


Asunto(s)
Boraginaceae , Consuelda , Ratas , Animales , Alantoína/farmacología , Extractos Vegetales/farmacología , Ratas Wistar , Cicatrización de Heridas , Antioxidantes/farmacología
2.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838592

RESUMEN

The aim of the present study was to correlate the antioxidant, antimicrobial, and cytotoxic activities of hydroalcoholic extracts obtained from the aerial parts of three Dracocephalum moldavica L. cultivars with their polyphenolic compositions. The polyphenols were identified and quantified using spectrophotometrical methods and LC-MS analysis. Their antioxidant capacities were assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. Their in vitro antimicrobial efficacies were assessed using the agar well diffusion and broth microdilution methods. Their cytotoxicity was investigated on normal diploid foreskin fibroblasts (BJ) and on colorectal adenocarcinoma (DLD-1) cell lines. The results pointed out significant amounts of polyphenolic compounds in the compositions of the tested cultivars, with rosmarinic acid as the main compound (amounts ranging between 5.337 ± 0.0411 and 6.320 ± 0.0535 mg/mL). All three cultivars displayed significant antioxidant (IC50 ranging between 35.542 ± 0.043 and 40.901 ± 0.161 µg/mL for the DPPH assay, and for the FRAP assay 293.194 ± 0.213 and 330.165 ± 0.754 µmol Trolox equivalent/mg dry vegetal material) and antimicrobial potential (especially towards the Gram-positive bacteria), as well as a selective toxicity towards the tumoral line. A significant positive correlation was found between antioxidant activity and the total phenolic acids (r2 = 0.987) and polyphenols (r2 = 0.951). These findings bring further arguments for strongly considering D. moldavica cultivars as promising vegetal products, which warrants further investigation.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Antioxidantes/química , Extractos Vegetales/química , Polifenoles/farmacología , Antiinfecciosos/farmacología
3.
Plants (Basel) ; 12(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36678961

RESUMEN

Three individual hydroalcoholic extracts derived from Hamamelis virginiana leaves, Krameria lappacea root, Salix alba bark, and the resulting herbal mixture (HM) were assessed for the phytochemical profile as well as for antibacterial and cytotoxic potential. The chemical composition of the individual extracts and of their mixture was analyzed by chromatographical (LC-MS) and spectrophotometrical methods. The antimicrobial properties were evaluated by using the agar-well diffusion and the broth microdilution assays, whereas the potential cytotoxicity was investigated on human keratinocyte cell line by MTT method and apoptosis test. The HM composition revealed important amounts of valuable polyphenolic compounds provided from the individual extracts, having synergistic biological effects. All tested extracts displayed in vitro antimicrobial properties, with a significantly higher efficacy noticed for the HM when tested against Staphylococcus aureus. Moreover, none of the tested extracts was responsible for in vitro cytotoxicity against the human keratinocytes in the selected concentration range. Furthermore, the HM was included in an oil-in-water cream for the nonpharmacological treatment of seborrheic dermatitis, developed and optimized by using a QbD approach. A D-optimal experimental plan with four factors that varied on two levels was used to investigate the effect of the quantitative variation of the formulation factors (emulsifier, co-emulsifier, thickening agent, oily phase ratio) on the characteristics of the cream in terms of firmness, consistency, adhesiveness, stringiness, spreadability, and viscosity. Based on the experimental results, an optimal formulation containing 2.5% emulsifier and 20% oily phase was prepared and analyzed. The obtained results showed appropriate quality characteristics of this novel cream, which may be used in the future to manage the associated symptoms of seborrheic dermatitis.

4.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807229

RESUMEN

Rosmarinus officinalis L. is a species that is widely known for its culinary and medicinal uses. The purpose of the present study consisted of the evaluation of the antiproliferative and antimicrobial effects of R. officinalis-loaded liposomes (L-R). Characterization of the liposomes was performed by establishing specific parameters. The load of the obtained liposomes was analyzed using an LC-MS method, and antiproliferative assays evaluated the cell viability on a liver adenocarcinoma cell line and on a human hepatic stellate cell line. Antimicrobial assays were performed by agar-well diffusion and by broth microdilution assays. The obtained liposomes showed high encapsulation efficiency, suitable particle size, and good stability. High amounts of caffeic (81.07 ± 0.76), chlorogenic (14.10 ± 0.12), carnosic (20.03 ± 0.16), rosmarinic (39.81 ± 0.35), and ellagic (880.02 ± 0.14) acids were found in their composition, together with other polyphenols. Viability and apoptosis assays showed an intense effect on the cancerous cell line and a totally different pattern on the normal cells, indicating a selective toxicity towards the cancerous ones and an anti-proliferative mechanism. Antimicrobial potential was noticed against all tested bacteria, with a better efficacy towards Gram-positive species. These results further confirm the biological activities of R. officinalis leaf extract, and proposes and characterizes novel delivery systems for their encapsulation, enhancing the biological activities of polyphenols, and overcoming their limitations.


Asunto(s)
Antiinfecciosos , Rosmarinus , Antiinfecciosos/farmacología , Humanos , Liposomas , Extractos Vegetales/farmacología , Polifenoles/farmacología
5.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684497

RESUMEN

This study aimed to investigate the antioxidant, antimicrobial, and cytotoxic potential of ethanolic extracts obtained from Gentiana asclepiadea L. and Inula helenium L. roots, in relation to their chemical composition. The total polyphenols, flavonoids, and phenolic acids were determined by spectrophotometric methods, while LC-MS analysis was used to evaluate the individual constituents. The antioxidant properties were tested using the FRAP and DPPH methods. The standard well diffusion and broth microdilution assays were carried out to establish in vitro antimicrobial efficacy and minimum inhibitory and bactericidal concentrations. The cytotoxicity was tested on rat intestinal epithelial cells using the MTT assay. The results pointed out important constituents such as secoiridoid glycoside (amarogentin), phenolic acids (caffeic acid, chlorogenic acid, trans-p-coumaric acid, salicylic acid), and flavonoids (apigenin, chrysin, luteolin, luteolin-7-O-glucoside, quercetin, rutoside, and naringenin) and promising antioxidant properties. The in vitro antimicrobial effect was noticed towards several pathogens (Bacillus cereus > Staphylococcus aureus > Enterococcus faecalis > Salmonella typhimurium and Salmonella enteritidis > Escherichia coli), with a pronounced bactericidal activity. Rat intestinal epithelial cell viability was not affected by the selected concentrations of these two extracts. These data support the ethnomedicinal recommendations of these species and highlight them as valuable sources of bioactive compounds.


Asunto(s)
Antiinfecciosos , Gentiana , Inula , Animales , Antiinfecciosos/química , Antioxidantes/química , Antioxidantes/farmacología , Etanol , Flavonoides/análisis , Flavonoides/farmacología , Inula/química , Extractos Vegetales/química , Ratas
6.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567203

RESUMEN

Fumaria schleicheri Soy. Will. is a species belonging to the Papaveraceae family, being widespread in East-Central and Southern Europe. As with numerous other species of the genus, it is used in traditional medicine for the treatment of hepatobiliary and digestive disorders. The aim of the present study consisted of the evaluation of its alkaloid content and the assessment of its in vitro antioxidant, anti-cholinesterase and cytotoxic potential. Total alkaloid content in the composition of the species was quantified by a spectrophotometrical method and they were individually identified and quantified by HPLC-DAD. The antioxidant capacity was investigated by the DPPH and FRAP methods, while the anti-cholinesterase activity was assessed by an adapted Ellman's method. The in vitro cytotoxic activity was evaluated on BJ human fibroblasts and DLD-1 human colon adenocarcinoma cell lines. Results showed the presence of bicuculline, protopine, chelidonine, stylopine and sanguinarine, among which bicuculline, protopine, stylopine and sanguinarine were quantified, while the antioxidant and anti-cholinesterase assays showed valuable potentials. No cytotoxic effect was observed on BJ cell lines and selective cytotoxicity was expressed towards tumoral cells. In this context, F. schleicheri appears as an important medicinal species with significant potential of substitution with the officinal species.

7.
Biomater Sci ; 9(18): 6183-6202, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34346411

RESUMEN

Among women, ovarian cancer is the fifth most frequent type of cancer, and despite benefiting from current standard treatment plans, 90% of patients relapse in the subsequent 18 months and, eventually, perish. As a result, via embracing nanotechnological advancements in the field of medical science, researchers working in the areas of cancer therapy and imaging are looking for the next breakthrough treatment strategy to ensure lower cancer recurrence rates and improved outcomes for patients. Herein, we design a novel phototheranostic agent with optical features in the biological window of the electromagnetic spectrum via encapsulating a newly synthesized phthalocyanine dye within biocompatible protein nanoparticles, allowing the targeted fluorescence imaging and synergistic dual therapy of ovarian cancer. The nanosized agent displays great biocompatibility and enhanced aqueous biostability and photothermal activity, as well as high reactive-oxygen-species generation efficiency. To achieve the active targeting of the desired malignant tissue and suppress the rapid clearance of the photosensitive agent from the peritoneal cavity, the nanoparticles are biofunctionalized with an anti-folate receptor antibody. A2780 ovarian cancer cells are employed to confirm the improved targeting capabilities and the in vitro cytotoxic efficiency of the theranostic nanoparticles after exposure to a 660 nm LED lamp; upon measurement via MTT and flow cytometry assays, a significant 95% decrease in the total number of viable cells is seen. Additionally, the therapeutic performance of our newly designed nanoparticles was evaluated in vivo, via real-time thermal monitoring and histopathological assays, upon the irradiation of tumour-bearing mice with a 660 nm LED lamp (0.05 W cm-2). Foremost, separately from steady-state fluorescence imaging, we found that, via utilizing FLIM investigations, the differences in fluorescence lifetimes of antibody biofunctionalized and non-functionalized nanoparticles can be correlated to different intracellular localization and internalization pathways of the fluorescent agent, which is relevant for the development of a cutting-edge method for the detection of cancer cells that overexpress folate receptors at their surfaces.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Imagen Óptica , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Fototerapia , Medicina de Precisión , Nanomedicina Teranóstica
8.
Molecules ; 26(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067400

RESUMEN

Syringa vulgaris L. (common lilac) is one of the most popular ornamental species, but also a promising not comprehensively studied source of bioactive compounds with important therapeutic potential. Our study was designed to characterize the chemical composition and to assess the antioxidant and cytotoxic properties of ethanolic extracts obtained from S. vulgaris L. flowers, leaves, bark, and fruit. The chemical profile of the ethanolic extracts was investigated using chromatographic (HPLC-DAD-ESI+, GC-MS) and spectral (UV-Vis, FT-IR) methods, while the protective effect against free radicals was evaluated in vitro by different chemical assays (DPPH, FRAP, CUPRAC). The cytotoxic activity was tested on two tumoral cell lines, HeLa, B16F10, using the MTT assay. Significant amounts of free or glycosylated chemical components belonging to various therapeutically important structural classes, such as phenyl-propanoids (syringin, acteoside, echinacoside), flavonoids (quercetin, kaempferol derivatives) and secoiridoids (secologanoside, oleuropein, 10-hydroxy oleuropein, demethyloleuropein, syringalactone A, nuzhenide, lingstroside) were obtained for the flowers, leaves and bark extracts, respectively. Furthermore, MTT tests pointed out a significant cytotoxic potential expressed in a non-dose-dependent manner toward the tumoral lines. The performed methods underlined that S. vulgaris extracts, in particular belonging to flowers and leaves, represent valuable sources of compounds with antioxidant and antitumoral potential.


Asunto(s)
Antioxidantes/química , Flores/química , Estrés Oxidativo , Extractos Vegetales/química , Hojas de la Planta/química , Syringa/química , Animales , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Cromatografía de Gases y Espectrometría de Masas , Glucósidos , Glicósidos , Células HeLa , Humanos , Melanoma Experimental , Ratones , Fenoles , Fenilpropionatos , Hojas de la Planta/metabolismo , Quercetina/análisis , Espectroscopía Infrarroja por Transformada de Fourier
9.
Molecules ; 21(10)2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27754394

RESUMEN

Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe3O4-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.


Asunto(s)
Compuestos Férricos/farmacocinética , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Tamaño de la Partícula , Adsorción , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glicol de Etileno/química , Compuestos Férricos/química , Humanos , Campos Magnéticos , Ratones , Microscopía Electrónica de Transmisión , Polietilenglicoles/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA