Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 104(4): e21685, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32350927

RESUMEN

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is one of the most notorious and difficult to control pests of potato and other solanaceous crops in North America. This insect has evolved a remarkable ability to detoxify both plant and synthetic toxins, allowing it to feed on solanaceous plants containing toxic alkaloids and to develop resistance to synthetic chemicals used for its control. RNA interference (RNAi) is a natural mechanism that evolved as an immune response to double-stranded RNA (dsRNA) viruses where dsRNA triggers silencing of target gene expression. RNAi is being developed as a method to control CPB. Here, we evaluated four CPB-specific genes to identify targets for RNAi-mediated control of this insect. Out of the four dsRNAs evaluated in CPB larvae and adults, dsIAP (dsRNA targeting inhibitor of apoptosis, iap gene) performed better than dsActin, dsHSP70, and dsDynamin in inducing larval mortality. However, in adults, the mortality induced by dsActin is significantly higher than the mortality induced by dsIAP, dsHSP70, and dsDynamin. Interestingly, a combination of dsIAP and dsActin performed better than either dsIAP or dsActin alone by inducing feeding inhibition in 24 hr and mortality in 48 hr in larvae. When the dsIAP and dsActin were expressed in the Escherichia coli HT115 strain and applied as a heat-killed bacterial spray on potato plants, it protected the plants from CPB damage. These studies show that the combination of dsIAP and dsActin shows promise as an insecticide to control CPB.


Asunto(s)
Escarabajos/genética , Proteínas Inhibidoras de la Apoptosis/genética , Interferencia de ARN , Actinas/genética , Animales , Escarabajos/efectos de los fármacos , Escarabajos/crecimiento & desarrollo , Escherichia coli , Control de Insectos/métodos , Proteínas de Insectos/genética , Larva/efectos de los fármacos , ARN Bicatenario , Solanum tuberosum
2.
PLoS Negl Trop Dis ; 10(6): e0004772, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27300294

RESUMEN

BACKGROUND: A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. METHODOLOGY/ PRINCIPAL FINDINGS: Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. CONCLUSIONS: The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites.


Asunto(s)
Ecdisona/metabolismo , Ecdisterona/análogos & derivados , Filariasis/tratamiento farmacológico , Hidrazinas/farmacología , Receptores de Esteroides/agonistas , Aminoácidos Diaminos/administración & dosificación , Animales , Brugia Malayi/efectos de los fármacos , Brugia Malayi/aislamiento & purificación , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Ecdisterona/química , Ecdisterona/farmacología , Filariasis/parasitología , Gerbillinae , Células HEK293 , Humanos , Hidrazinas/química , Hidrazinas/aislamiento & purificación , Larva/efectos de los fármacos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Receptores de Esteroides/metabolismo
3.
Sci Rep ; 6: 20421, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26861263

RESUMEN

The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we used specialist pest Colorado potato beetle (CPB) and its host plant, potato, as a model system. Next-generation sequencing (454 pyrosequencing) was performed to reveal the CPB transcriptome. Differential expression patterns of cytochrome P450 complement (CYPome) were analyzed between the susceptible (S) and imidacloprid resistant (R) beetles. We also evaluated the global transcriptome repertoire of CPB CYPome in response to the challenge by potato leaf allelochemicals and imidacloprid. The results showed that more than half (51.2%) of the CBP cytochrome P450 monooxygenases (P450s) that are up-regulated in the R strain are also induced by both host plant toxins and pesticide in a tissue-specific manner. These data suggest that xenobiotic adaptation in this specialist herbivore is through up-regulation of multiple P450s that are potentially involved in detoxifying both pesticide and plant allelochemicals.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Escarabajos/fisiología , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Herbivoria/efectos de los fármacos , Solanum tuberosum/genética , Xenobióticos/farmacología , Adaptación Fisiológica/genética , Animales , Sistema Enzimático del Citocromo P-450/clasificación , Perfilación de la Expresión Génica , Herbivoria/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Solanum tuberosum/metabolismo , Regulación hacia Arriba
4.
Pest Manag Sci ; 67(2): 175-82, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21061270

RESUMEN

BACKGROUND: RNA interference (RNAi) is a breakthrough technology for conducting functional genomics studies and also as a potential tool for crop protection against insect pests. The major challenge for efficient pest control using RNAi in the field is the development of efficient and reliable methods for production and delivery of double-stranded RNA (dsRNA). In this paper, the potential of feeding dsRNA expressed in bacteria or synthesized in vitro to manage populations of Colorado potato beetle, Leptinotarsa decemlineata (Say) (CPB), was investigated. RESULTS: Feeding RNAi successfully triggered the silencing of all five target genes tested and caused significant mortality and reduced body weight gain in the treated beetles. This study provides the first example of an effective RNAi response in insects after feeding dsRNA produced in bacteria. CONCLUSION: These results suggest that the efficient induction of RNAi using bacteria to deliver dsRNA is a possible method for management of CPB. This could be also a promising bioassay approach for genome-wide screens to identify effective target genes for use as novel RNAi-based insecticides.


Asunto(s)
Escarabajos/genética , Control de Insectos/métodos , Enfermedades de las Plantas/parasitología , Interferencia de ARN , Solanum tuberosum/parasitología , Animales , Escarabajos/fisiología , Ingestión de Alimentos , Proteínas de Insectos/genética , Enfermedades de las Plantas/prevención & control , ARN Bicatenario/genética , ARN Bicatenario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA