Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 320(6): H2188-H2200, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861144

RESUMEN

The interaction of phospholamban (PLB) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is a key regulator of cardiac contractility and a therapeutic target in heart failure (HF). PLB-mediated increases in SERCA2a activity improve cardiac function and HF. Clinically, this mechanism can only be exploited by a general activation of the proteinkinase A (PKA), which is associated with side effects and adverse clinical outcomes. A selective interference of the PLB-SERCA2a interaction is desirable but will require novel tools that allow for an integrated assessment of this interaction under both physiological and pathophysiological conditions. A circularly permutated green fluorescent protein (cpGFP) was interposed between SERCA2a and PLB to result into a single SERCA2a-cpGFP-PLB recombinant protein (SGP). Expression, phosphorylation, fluorescence, and function of SGP were evaluated. Expression of SGP-cDNA results in a functional recombinant protein at the predicted molecular weight. The PLB domain of SGP retains its ability to polymerize and can be phosphorylated by PKA activation. This increases the fluorescent yield of SGP by between 10% and 165% depending on cell line and conditions. In conclusion, a single recombinant fusion protein that combines SERCA2a, a circularly permutated green fluorescent protein, and PLB can be expressed in cells and can be phosphorylated at the PLB domain that markedly increases the fluorescence yield. SGP is a novel cellular SERCA2a-PLB interaction monitor.NEW & NOTEWORTHY This study describes the design and characterization of a novel biosensor that can visualize the interaction of SERCA2a and phospholamban (PLB). The biosensor combines SERCA2a, a circularly permutated green fluorescent protein, and PLB into one recombinant protein (SGP). Proteinkinase A activation results in phosphorylation of the PLB domain and is associated with a marked increase in the fluorescence yield to allow for real-time monitoring of the SERCA2a and PLB interaction in cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Complementario , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Ratas , Proteínas Recombinantes de Fusión , Proteínas Recombinantes , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transfección
2.
Cardiovasc Diabetol ; 11: 135, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23116444

RESUMEN

It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG) and that exposure of zinc ion (Zn2+) to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after ß-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% ß-myosin heavy chain expression in the heart. ß-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR) at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our results suggest that the relaxing effects of Zn2+ on cardiomyocyte function are more pronounced in the HG state due an insulin-dependent effect of enhancing removal of cytosolic Ca2+ via SERCA2a or NCX or by reducing Ca2+ influx via L-type channel or Ca2+ leak through the RyR. Investigations into the effects of Zn2+ on these mechanisms are now underway.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas Ventriculares/metabolismo , Zinc/metabolismo , Animales , Glucemia/metabolismo , Calcio/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Diástole , Regulación de la Expresión Génica , Hipotiroidismo/metabolismo , Hipotiroidismo/fisiopatología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Necrosis , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Factores de Tiempo
3.
J Struct Biol ; 155(1): 12-21, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16621603

RESUMEN

We describe the intracellular distributions of nine essential elements (P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn) found in cardiomyocytes imaged using synchrotron X-ray induced fluorescence. Cardiomyocytes were isolated from rat hearts, flash frozen on Si(3)N(4) windows, freeze-dried, and imaged with approximately 300 nm spatial resolution. Distinct longitudinal patterns in cardiomyocytes were most apparent for the elements Fe and Cu, which clearly colocalized. Transverse striations were apparent for P, S, Fe, and Zn, while those for Zn were consistently the most prominent ( approximately 10(-3)M) and appeared with a periodicity in the range 1.63-1.75 microm, the expected length of a sarcomere. Transverse striations for high concentrations of P, Fe, and Zn and low concentrations of S colocalized and coincided with the I-band of the intact cardiomyocyte. Fluorescence microscopy using FluoZin-3 in intact cardiomyocytes suggests that Zn(2+) influx is through sarcolemmal calcium channels and that significant stores of intracellular Zn(2+) may be released quickly (<1s) into the cytosol. These data collectively suggest that Zn(2+) is buffered by structures associated near the T-tubules and/or in the sarcoplasmic reticulum and is found in relative abundance sufficient to act as a modifier of Ca(2+) regulation or as a possible signaling messenger for gene expression.


Asunto(s)
Miocitos Cardíacos/química , Oligoelementos/análisis , Animales , Calcio/análisis , Cloro/análisis , Cobre/análisis , Microanálisis por Sonda Electrónica , Hierro/análisis , Masculino , Manganeso/análisis , Microscopía Fluorescente , Concentración Osmolar , Fósforo/análisis , Potasio/análisis , Ratas , Ratas Endogámicas Dahl , Azufre/análisis , Distribución Tisular , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA