Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Neurosci ; 46(12): 1018-1024, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778915

RESUMEN

Planning and anticipating motor actions enables movements to be quickly and accurately executed. However, if anticipation is not properly controlled, it can lead to premature impulsive actions. Impulsive behavior is defined as actions that are poorly conceived and are often risky and inappropriate. Historically, impulsive behavior was thought to be primarily controlled by the frontal cortex and basal ganglia. More recently, two additional brain regions, the ventromedial (VM) thalamus and the anterior lateral motor cortex (ALM), have been shown to have an important role in mice. Here, we explore this newly discovered role of the thalamocortical pathway and suggest cellular mechanisms that may be involved in driving the cortical activity that contributes to impulsive behavior.


Asunto(s)
Corteza Motora , Tálamo , Ratones , Animales , Ganglios Basales , Encéfalo , Conducta Impulsiva , Vías Nerviosas
2.
Elife ; 112022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35259091

RESUMEN

The thalamus is a gateway to the cortex. Cortical encoding of complex behavior can therefore only be understood by considering the thalamic processing of sensory and internally generated information. Here, we use two-photon Ca2+ imaging and optogenetics to investigate the role of axonal projections from the posteromedial nucleus of the thalamus (POm) to the forepaw area of the mouse primary somatosensory cortex (forepaw S1). By recording the activity of POm axonal projections within forepaw S1 during expert and chance performance in two tactile goal-directed tasks, we demonstrate that POm axons increase activity in the response and, to a lesser extent, reward epochs specifically during correct HIT performance. When performing at chance level during learning of a new behavior, POm axonal activity was decreased to naive rates and did not correlate with task performance. However, once evoked, the Ca2+ transients were larger than during expert performance, suggesting POm input to S1 differentially encodes chance and expert performance. Furthermore, the POm influences goal-directed behavior, as photoinactivation of archaerhodopsin-expressing neurons in the POm decreased the learning rate and overall success in the behavioral task. Taken together, these findings expand the known roles of the higher-thalamic nuclei, illustrating the POm encodes and influences correct action during learning and performance in a sensory-based goal-directed behavior.


Asunto(s)
Objetivos , Corteza Somatosensorial , Animales , Ratones , Optogenética , Corteza Somatosensorial/fisiología , Núcleos Talámicos , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA