Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Ther Med ; 27(4): 143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476921

RESUMEN

Notoginseng saponins (NS) are the active ingredients in Panax notoginseng (Burk.) F.H. Chen (PN). NS can be transformed depending on how the extract is processed. Fermentation has been shown to produce secondary ginsenosides with increased bioavailability. However, the therapeutic effect of fermented NS (FNS) requires further study. The present study compared the compositions and activities of FNS and NS in blood deficiency rats, which resembles the symptoms of anemia in modern medicine, induced by acetylphenylhydrazine and cyclophosphamide. A total of 32 rats were randomly divided into control, model, FNS and NS groups. A blood deficiency model was established and then treatment was orally administered for 21 days. The results of component analysis indicated that some saponins transformed during the fermentation process resulting in a decrease of notoginsenoside R1, and ginsenosides Rg1, Rb1 and Re, and an increase in ginsenosides Rd, Rh2, compound K, protopanaxadiol and protopanaxatriol. The animal results showed that both FNS and NS increased the number of white blood cells (WBCs), red blood cells, hemoglobin, platelets and reticulocytes, and the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoietin (EPO) and thrombopoietin (TPO), decreased the G0/G1 phase and increased G2/M phase, and decreased the apoptosis rate of bone marrow (BM) cells, which suggested a contribution to the recovery of hematopoietic function of the BM cells. FNS and NS increased the protein expression levels of the cytokines IL-4, IL-10, IL-12, IL-13, TGF-ß, IL-6, IFN-γ and TNF-α, and the mRNA expression levels of transcription factors GATA binding protein 3 and T-box expressed in T cell (T-bet). FNS and NS treatment also increased the number of CD4+ T cells, and decreased the enlargement of the rat spleen and thymus atrophy, which indicated a protective effect on the organs of the immune system. The results of the present study demonstrated that compared with NS, FNS showed an improved ability to increase the levels of WBCs, lymphocytes, GM-CSF, EPO, TPO, aspartate aminotransferase, IL-10, IL-12, IL-13 and TNF-α, and the mRNA expression levels of T-bet, and decrease alanine aminotransferase levels. The differences seen for FNS treatment could arise from their improved bioavailability compared with NS, due to the larger proportion of hydrophobic ginsenosides produced during fermentation.

2.
J Ethnopharmacol ; 321: 117409, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972909

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhizae Radix et Rhizoma, a Chinese herb known as licorice, is frequently incorporated in traditional Chinese medicine (TCM) formulations, due to its significant medicinal value and sweet taste. Despite licorice's merits, no systematic scientometric study has yet been conducted to analyze licorice research trends over the past 25 years. AIM OF THE STUDY: We conducted this study with the aim to provide researchers with a comprehensive overview of research advances in the application of licorice as a TCM ingredient and to offer valuable insights to guide future endeavors in this research field. METHODS: We selected licorice-related research papers published between 1997 and 2021 from the Web of Science Core Collection then conducted a scientometric analysis using VOSviewer and CiteSpace software tools. RESULTS: A total of 4883 licorice-related publications, including 4511 research papers, 372 review papers, and their cited references, were included in the analysis. Most of these articles were authored by researchers in China (36.8%), including major contributors Wang Ying, Ye Min, and Zhang Yu. The Journal of Ethnopharmacology (impact factor = 5.4) hosted the greatest number of papers (145 articles). Keyword cluster analysis revealed three keyword categories indicating that current licorice research is focused on licorice quality control and identification of licorice active ingredients and associated pharmacological mechanisms. CONCLUSION: This study provides a comprehensive overview of licorice-related research trends over the past 25 years as based on quantitative and qualitative analyses of published licorice-related articles. The results of this multi-level analysis of licorice research related to TCM formulations, chemical compositions, and pharmacological effects should provide valuable reference data and insights to guide future research endeavors in this field.


Asunto(s)
Medicamentos Herbarios Chinos , Glycyrrhiza , Medicamentos Herbarios Chinos/química , Glycyrrhiza/química , Etnofarmacología , China
3.
Artículo en Inglés | MEDLINE | ID: mdl-34249129

RESUMEN

Eucommia leaves are dry leaves of Eucommia ulmoides which have long been considered as a functional health food for the treatment of hypertension, hypercholesterolemia, fatty liver, and osteoporosis. With the recent development of Chinese medicine, Eucommia leaves are widely used for tonifying the kidneys and strengthening bone. However, the specific molecular mechanism of Eucommia leaves for strengthening bone remains largely unknown. Osteoblasts are the main functional cells of bone formation; thus, it is essential to study the effect of Eucommia leaves on osteoblasts to better understand their mechanism of action. In the present study, we prepared an aqueous extract of Eucommia leaves (ELAE) and determined its content by high-performance liquid chromatography (HPLC). The effects of ELAE on MC3T3-E1 cells were investigated by CCK-8 assay, alkaline phosphatase (ALP), and Alizarin red S staining assays, combined with RNA sequencing (RNA-seq) and qRT-PCR validation. We demonstrated that ELAE had a significant promoting effect on the proliferation of MC3T3-E1 cells and significantly enhanced extracellular matrix synthesis and mineralization, which were achieved by regulating various functional genes and related signaling pathways. ELAE significantly increased the expression level of genes promoting cell proliferation, such as Rpl10a, Adnp, Pex1, Inpp4a, Frat2, and Pcdhga1, and reduced the expression level of genes inhibiting cell proliferation, such as Npm1, Eif3e, Cbx3, Psmc6, Fgf7, Fxr1, Ddx3x, Mbnl1, and Cdc27. In addition, ELAE increased the expression level of gene markers in osteoblasts, such as Col5a2, Ubap2l, Dkk3, Foxm1, Col16a1, Col12a1, Usp7, Col4a6, Runx2, Sox4, and Bmp4. Taken together, our results suggest that ELAE could promote osteoblast proliferation, differentiation, and mineralization and prevent osteoblast apoptosis. These findings not only increase our understanding of ELAE on the regulation of bone development but also provide a possible strategy to further study the prevention and treatment of osteogenic related diseases by ELAE.

4.
J Orthop Surg Res ; 16(1): 208, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752715

RESUMEN

BACKGROUND: Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). METHODS: The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. RESULTS: We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. CONCLUSIONS: Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.


Asunto(s)
Cuernos de Venado/química , Regeneración Ósea/genética , Cartílago/crecimiento & desarrollo , Cartílago/fisiología , Condrogénesis/genética , Ciervos/anatomía & histología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Inflamación/prevención & control , Medicina Tradicional China , Extractos de Tejidos/farmacología , Apófisis Xifoides , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Condrocitos/fisiología , Masculino , Ratas Sprague-Dawley
5.
J Cosmet Dermatol ; 19(2): 519-528, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31219234

RESUMEN

BACKGROUND: The collagen hydrolysates as a cosmetic material have already been wide application. At present, few studies concern with transdermal behavior of collagen hydrolysates in vitro. OBJECTIVE: Deer sinew contains rich collagen with a content of 82.12%. Thus, this article mainly studies the transdermal effect of collagen hydrolysates of deer sinew (DSCH) on mouse skin, ex vitro, and to explore skincare protection of percutaneous proteins. METHODS: Collagen hydrolysates of deer sinew were extracted by 0.2% HCl and a two-step enzymatic method of pepsin-trypsin. The content of 17 amino acids of DSCH was detected by precolumn derivatization RP-HPLC. Using Franz diffusion cell systems studied the transdermal effect of DSCH and then examined the percutaneous rate and molecular weight distribution of percutaneous proteins (PP). Further, we studied the bioactivity of PP in vitro, such as the total antioxidant capacity and collagen secretion in NIH/3T3 cells. RESULTS: About 8.0% DSCH could penetrate skin of mouse, the molecular weight of PP mainly distributed in 5 ~ 13 kDa, accounted for 91.55%. Compared with the antioxidant activity of DSCH, PP had obvious antioxidant activity of scavenging radical cation. Meanwhile, PP promoted cell proliferation and collagen I secretion in fibroblast cells; however, level of type III collagen has no change. CONCLUSION: Collagen hydrolysates of deer sinew may be used as cosmetic material to protect the skin from oxidative stress, to prevent premature skin aging.


Asunto(s)
Colágeno Tipo I/metabolismo , Ciervos , Depuradores de Radicales Libres/farmacología , Hidrolisados de Proteína/farmacología , Piel/efectos de los fármacos , Células 3T3 , Animales , Cosméticos/farmacología , Depuradores de Radicales Libres/aislamiento & purificación , Masculino , Medicina Tradicional China/métodos , Ratones , Estrés Oxidativo/efectos de los fármacos , Permeabilidad , Hidrolisados de Proteína/aislamiento & purificación , Piel/citología , Piel/metabolismo , Envejecimiento de la Piel/efectos de los fármacos
6.
Chin Med ; 14: 29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31485261

RESUMEN

BACKGROUND: Guzhi Zengsheng Zhitongwan (GZZSZTW) is an effective formula of traditional Chinese herbal medicine and has been widely applied in the treatment of joint diseases for many years. The aim of this study was to dissect the molecular targets and signaling pathways of Guzhi Zengsheng Zhitongwan based on the analysis of serum proteomics. METHODS: The Chinese herbs of GZZSZTW were immersed in 5 l distilled water and boiled with reflux extraction method. The extract was filtered, concentrated and freeze-dried. The chemical profile of GZZSZTW extract was determined by high-performance lipid chromatography (HPLC). The 7-week old Sprague-Dawley (SD) rats in GZZSZTW groups were received oral administration at doses of 0.8, 1.05, and 1.3 g/kg per day and the rats in blank group were fed with drinking water. Serum samples were collected from the jugular veins. Primary chondrocyte viability was evaluated by CCK-8 assay. A full spectrum of the molecular targets and signaling pathways of GZZSZTW were investigated by isobaric tags for relative and absolute quantitation (iTRAQ) analysis and a systematic bioinformatics analysis accompanied with parallel reaction monitoring (PRM) and siRNA validation. RESULTS: GZZSZTW regulated a series of functional proteins and signaling pathways responsible for cartilage development, growth and repair. Functional classification analysis indicated that these proteins were mainly involved in the process of cell surface dynamics. Pathway analysis mapped these proteins into several signalling pathways involved in chondrogenesis, chondrocyte proliferation and differentiation, and cartilage repair, including hippo signaling pathway, cGMP-PKG signaling pathway, cell cycle and calcium signaling pathway. Protein-protein interaction analysis and siRNA knockdown assay identified an interaction network consisting of TGFB1, RHO GTPases, ILK, FLNA, LYN, DHX15, PKM, RAB15, RAB1B and GIPC1. CONCLUSIONS: Our results suggest that the effects of GZZSZTW on treating joint diseases might be achieved through the TGFB1/RHO interaction network coupled with other proteins and signaling pathways responsible for cartilage development, growth and repair. Therefore, the present study has greatly expanded our knowledge and provided scientific support for the underlying therapeutic mechanisms of GZZSZTW on treating joint diseases. It also provided possible alternative strategies for the prevention and treatment for joint diseases by using traditional Chinese herbal formulas.

7.
Molecules ; 23(6)2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29890619

RESUMEN

As one of most important traditional Chinese medicine resources, the oviduct of female Rana chensinensis (Chinese brown frog) was widely used in the treatment of asthenia after sickness or delivery, deficiency in vigor, palpitation, and insomnia. Unlike other vertebrates, the oviduct of Rana chensinensis oviduct significantly expands during prehibernation, in contrast to the breeding period. To explain this phenomenon at the molecular level, the protein expression profiles of Rana chensinensis oviduct during the breeding period and prehibernation were observed using isobaric tags for relative and absolute quantitation (iTRAQ) technique. Then, all identified proteins were used to obtain gene ontology (GO) annotation. Ultimately, KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis was performed to predict the pathway on differentially expressed proteins (DEPs). A total of 4479 proteins were identified, and 312 of them presented different expression profiling between prehibernation and breeding period. Compared with prehibernation group, 86 proteins were upregulated, and 226 proteins were downregulated in breeding period. After KEGG enrichment analysis, 163 DEPs were involved in 6 pathways, which were lysosome, RNA transport, glycosaminoglycan degradation, extracellular matrix (ECM)⁻receptor interaction, metabolic pathways and focal adhesion. This is the first report on the protein profiling of Rana chensinensis oviduct during the breeding period and prehibernation. Results show that this distinctive physiological phenomenon of Rana chensinensis oviduct was mainly involved in ECM⁻receptor interaction, metabolic pathways, and focal adhesion.


Asunto(s)
Oviductos/metabolismo , Proteómica , Animales , Cruzamiento , Regulación hacia Abajo , Femenino , Hibernación , Ranidae , Regulación hacia Arriba
8.
Zhongguo Zhong Yao Za Zhi ; 43(23): 4587-4591, 2018 Dec.
Artículo en Chino | MEDLINE | ID: mdl-30717546

RESUMEN

The use of animal medicine has a long history in China, it has the characteristics of high curative effect,strong activity, wide application and great potential. However,the circulation of animal medicine in current market mixed counterfeit variety and complex. Molecular identification technology of DNA barcoding is an emerging molecular biotechnology in recent years, it is a powerful supplement to traditional identification methods. This method can well identify animal species at the molecular level and has high accuracy, it can identify animal medicines quickly and monitor the medicine market effectively. This article summarizes the research process of molecular identification of DNA barcoding, the application of DNA barcoding in medicinal animals identification in recent years, and the limitations of DNA barcoding technology.


Asunto(s)
Código de Barras del ADN Taxonómico , Animales , China , ADN , Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA