Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 130822, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521337

RESUMEN

Ulcerative colitis (UC) is regarded as a recurring inflammatory disorder of the gastrointestinal tract, for which treatment approaches remain notably limited. In this study, we demonstrated that ginseng polysaccharides (GPs) could alleviate the development of dextran sulfate sodium (DSS)-induced UC as reflected by the ameliorated pathological lesions in the colon. GPs strikingly suppressed the expression levels of multiple inflammatory cytokines, as well as significantly inhibited the infiltration of inflammatory cells. Microbiota-dependent investigations by virtue of 16S rRNA gene sequencing, antibiotic treatment and fecal microbiota transplantation illustrated that GPs treatment prominently restored intestinal microbial balance predominantly through modulating the relative abundance of Lactobacillus. Additionally, GPs remarkably influenced the levels of microbial tryptophan metabolites, diminished the intestinal permeability and strengthened intestinal barrier integrity via inhibiting the 5-HT/HTR3A signaling pathway. Taken together, the promising therapeutic potential of GPs on the development of UC predominantly hinges on the capacity to suppress the expression of inflammatory cytokines as well as to influence Lactobacillus and microbial tryptophan metabolites.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Panax , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Triptófano , ARN Ribosómico 16S , Citocinas , Sulfato de Dextran , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL
2.
Phytomedicine ; 126: 155348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335913

RESUMEN

BACKGROUND: (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS: A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS: Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION: Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.


Asunto(s)
Dioxoles , Lignanos , Lesiones Precancerosas , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Lignanos/farmacología , Proliferación Celular , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , Apoptosis , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral
3.
Phytomedicine ; 123: 155253, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065034

RESUMEN

BACKGROUND: Correa's cascade is a pathological process beginning from gastritis to gastric precancerous lesions, and finally to gastric carcinoma (GC). While the pathogenesis of GC remains unclear, oxidative stress plays a prominent role throughout the entire Correa's cascade process. Studies have shown that some natural products (NPs) could halt and even reverse the development of the Correa's cascade by targeting oxidative stress. METHODS: To review the effects and mechanism by which NPs inhibit the Correa's cascade through targeting oxidative stress, data were collected from PubMed, Embase, Web of Science, ScienceDirect, and China National Knowledge Infrastructure databases from initial establishment to April 2023. NPs were classified and summarized by their mechanisms of action. RESULTS: NPs, such as terpenoid, polyphenols and alkaloids, exert multistep antioxidant stress effects on the Correa's cascade. These effects include preventing gastric mucosal inflammation (stage 1), reversing gastric precancerous lesions (stage 2), and inhibiting gastric carcinoma (stage 3). NPs can directly impact the conversion of gastritis to GC by targeting oxidative stress and modulating signaling pathways involving IL-8, Nrf2, TNF-α, NF-κB, and ROS/MAPK. Among which polyphenols have been studied more and are of high research value. CONCLUSIONS: NPs display a beneficial multi-step action on the Correa's cascade, and have potential value for clinical application in the prevention and treatment of gastric cancer by regulating the level of oxidative stress.


Asunto(s)
Productos Biológicos , Carcinoma , Gastritis , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Antioxidantes/farmacología , Productos Biológicos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/prevención & control , Lesiones Precancerosas/complicaciones , Lesiones Precancerosas/patología , Carcinoma/complicaciones
4.
Front Immunol ; 14: 1297101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035066

RESUMEN

Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.


Asunto(s)
Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Lesiones Precancerosas/patología , Inflamación , Antioxidantes , Microambiente Tumoral
5.
Phytomedicine ; 119: 155023, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586159

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with no effective cure. Targeting endoplasmic reticulum (ER) stress pathway may offer a novel approach to ameliorate cognitive deficits in AD. Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription, has shown potential benefits for AD. To facilitate the development of new therapeutic agents for AD, it is important to identify the active components and the underlying mechanisms of BSYZ against AD. PURPOSE: The aim of this study was to systematically screen the active components of BSYZ that could improve learning and memory impairment in AD by modulating ER stress pathway. METHODS: A drug-target (D-T) network was constructed to analyze the herbal components of BSYZ. Network proximity method was used to identify the potential anti-AD components that targeted ER stress and evaluate their synergistic effects. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and the literature evidence were considered to select promising candidates for further validation. The selected components were tested in vitro using an AD cell model (APPswe-SH-SY5Y). In vivo anti-AD effects of the components were assessed in APP/PS1 double-transgenic mice. RESULTS: 58 potential anti-AD components targeting ER stress were detected by network proximity analysis, and 13 out of them were selected based on ADMET properties and literature evidence. In vitro experiments confirmed that 5 components, namely gomisin B, ß-Carotene, imperatorin, chrysophanol, and osthole (OST), exhibited anti-AD effects on the APPswe-SH-SY5Y model. Moreover, network proximity analysis suggested that OST and Gomisin B might have synergistic effects on modulating ER stress. In vivo experiments demonstrated that OST, Gomisin B, OST+Gomisin B, and BSYZ all improved learning and memory function in APP/PS1 mice. Gomisin B and OST also restored cellular morphology and tissue structure in APP/PS1 mice. Thioflavine-S (Th-S) staining revealed that they reduced amyloid plaque deposition in the brain tissue of AD model mice. The qPCR results indicated that BSYZ, OST, and Gomisin B differentially regulated IRE1α, PERK, EIF2α, DDIT3, and Caspase 12 expression levels, while the OST and Gomisin B co-administration group showed better efficacy. This trend was further confirmed by immunofluorescence experiments. CONCLUSION: This study identified the active components of BSYZ that could ameliorate learning and memory impairment in AD by targeting ER stress pathway. OST and Gomisin B exhibited synergistic effects on modulating ER stress and reducing amyloid plaque deposition in vivo. Overall, our study elucidated the molecular mechanisms of BSYZ and its active components in attenuating AD symptoms which suggested the therapeutic potential of TCM for AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Endorribonucleasas , Placa Amiloide , Proteínas Serina-Treonina Quinasas , Ratones Transgénicos , Estrés del Retículo Endoplásmico , Modelos Animales de Enfermedad , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide
6.
Curr Drug Metab ; 24(8): 611-620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519003

RESUMEN

BACKGROUND: Osthole (OST) is a bioactive natural coumarin derived from the plant Cnidium monnieri (L.) Cusson fruit (She Chuang Zi), which has various pharmacological and biological activities. OST contains an α,ß- unsaturated lactone, which is an electrophilic group that tends to be metabolized into reactive metabolites (RMs). Then, RMs are able to covalently modify nucleophilic amino acid (AA) residues of target proteins. However, few researchers considered the contribution of the covalent modification induced by OST or its metabolites. OBJECTIVE: This study aims to investigate the metabolic profile and the metabolites-protein modification of OST. METHODS: The metabolites of OST were qualitatively identified using UHPLC-Q-TOF-MS. The RMs modification patterns and potentially modified AA residues were confirmed by UHPLC-Q-TOF-MS using rat liver microsomes (RLMs) and model AAs. Finally, the modified peptides derived from high-abundance microsomal peptides were separated via nano-LC-Orbitrap-MS, and then RM-modified proteins were identified using a proteome discoverer. RESULTS: In the presence of RLMs, OST could rapidly be metabolized within 1 h and hardly identified at 4 h. We detected 10 OST metabolites, 13 OST metabolites-NAC (N-acetyl cysteine) adducts, 3 NAL (N-acetyl lysine) adducts, and 11 GSH (glutathione) adducts. Furthermore, 16 RM-modified protein targets were identified, many of which are included in the essential biological processes of OST's anti-Alzheimer's disease (AD) and anti-tumor. CONCLUSION: This study provides a novel perspective on the molecular mechanism of OST's pharmacological activities, as well as identifies potential targets for further development and application of OST and other Natural products (NPs).

7.
Eur J Pharmacol ; 954: 175895, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37422122

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE: This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS: In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We also performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS: 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION: Overall, this study applied systems pharmacology approach, UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Eleutherococcus , Enfermedades Neurodegenerativas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Farmacología en Red , Espectrometría de Masas en Tándem/métodos , Acetilcolinesterasa , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Cromatografía Líquida de Alta Presión/métodos
8.
J Ethnopharmacol ; 315: 116658, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37263316

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huang-Lian-Jie-Du decoction (HLJD), a traditional Chinese medicine prescription, has been implicated as effective in treating colitis, depression and inflammation-related diseases. Whether HLJD decoction could ameliorate colitis-induced depression was still unknown and the underlying mechanism was needed to be clarified. AIM OF THE STUDY: Our study aimed to explore the effect and the underlying mechanism of HLJD treatment on colitis-induced depression and the involvement of the inflammatory factors and microglial-activated related genes. MATERIALS AND METHODS: The chronic colitis model was established by treating male mice with 1% dextran sulfate sodium (DSS) for 8 weeks. One week after DSS-treated, HLJD decoction was administered orally with 2 and 4 g/kg daily for 7 weeks. Behavior tests (Open field/Elevated plus maze/Novel object recognition) and TUNEL staining were then assessed. The expression of inflammatory-related genes and microglial dysregulation were measured by RT-PCR and the expression of Trem2, Danp12 and Iba1 were assessed by immunofluorescence methods. RESULTS: Depressive-like behaviors were observed in mice treated with DSS, which suffered colitis. Compared to normal control (NC-V) mice, the density of TUNEL + cells in the habenula (Hb), hippocampus (HIP), and cortex were significantly higher in colitis (DSS-V) mice, especially in Hb. Compared to NC-V and several brain regions, the expression levels of the Il-1ß, Il-10 and Dap12 mRNA were significantly increased in the lateral habenula (LHb) of colitis mice. Moreover, the expression of Trem2, Dap12 and Iba1 were increased in LHb of DSS-V mice. HLJD treatment could alleviate depressive-like behaviors, reduce the density of TUNEL + cells in Hb and the expression of Il-6, Il-10 and Dap12 mRNA in LHb of DSS-V mice. The overexpression of Trem2, Dap12 and Iba1 in LHb of DSS-V mice were reversed after HLJD treatment. CONCLUSION: These results reveal LHb is an important brain region during the process of colitis-induced depression. HLJD treatment could alleviates depressive-like behaviors in colitis mice via inhibiting the Trem2/Dap12 pathway in microglia of LHb, which would contribute to the precise treatment. It provides a potential mechanistic explanation for the effectiveness of HLJD treatment in colitis patients with depression.


Asunto(s)
Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Masculino , Animales , Ratones , Interleucina-10/metabolismo , Sulfato de Dextran , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Medicamentos Herbarios Chinos/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico , Colon , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
9.
BMC Complement Med Ther ; 23(1): 89, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959600

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) has been extensively used for neoplasm treatment and has provided many promising therapeutic candidates. We previously found that Centipeda minima (C. minima), a Chinese medicinal herb, showed anti-cancer effects in lung cancer. However, the active components and underlying mechanisms remain unclear. In this study, we used network pharmacology to evaluate C. minima active compounds and molecular mechanisms in lung cancer. METHODS: We screened the TCMSP database for bioactive compounds and their corresponding potential targets. Lung cancer-associated targets were collected from Genecards, OMIM, and Drugbank databases. We then established a drug-ingredients-gene symbols-disease (D-I-G-D) network and a protein-protein interaction (PPI) network using Cytoscape software, and we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using R software. To verify the network pharmacology results, we then performed survival analysis, molecular docking analysis, as well as in vitro and in vivo experiments. RESULTS: We identified a total of 21 C. minima bioactive compounds and 179 corresponding targets. We screened 804 targets related to lung cancer, 60 of which overlapped with C. minima. The top three candidate ingredients identified by D-I-G-D network analysis were quercetin, nobiletin, and beta-sitosterol. PPI network and core target analyses suggested that TP53, AKT1, and MYC are potential therapeutic targets. Moreover, molecular docking analysis confirmed that quercetin, nobiletin, and beta-sitosterol, combined well with TP53, AKT1, and MYC respectively. In vitro experiments verified that quercetin induced non-small cell lung cancer (NSCLC) cell death in a dose-dependent manner. GO and KEGG analyses found 1771 enriched GO terms and 144 enriched KEGG pathways, including a variety of cancer related pathways, the IL-17 signaling pathway, the platinum drug resistance pathway, and apoptosis pathways. Our in vivo experimental results confirmed that a C. minima ethanol extract (ECM) enhanced cisplatin (CDDP) induced cell apoptosis in NSCLC xenografts. CONCLUSIONS: This study revealed the key C. minima active ingredients and molecular mechanisms in the treatment of lung cancer, providing a molecular basis for further C. minima therapeutic investigation.


Asunto(s)
Asteraceae , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Quercetina , Cisplatino
10.
Biomed Chromatogr ; 37(4): e5589, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36689998

RESUMEN

Li-Zhong-Xiao-Pi granules (LZXP) are effective for treating gastric precancerous lesions (GPL) in traditional Chinese medicine. However, the active compounds of LZXP and their potential therapeutic mechanism in GPL remained unclarified. The purpose of this study is to investigate the chemical composition and potential targets of LZXP. Based on the accurate masses, ion fragments, and literature data, a total of 128 compounds were identified in the LZXP sample using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) in both positive and negative ion modes, and 28 of these compounds were exactly determined by comparison with authentic reference standards. Meanwhile, 11 typical components were quantified via UPLC during a 24 min period. The linearity, accuracy, stability and recovery of the method were all proven. Through the network pharmacological analysis, six chemicals (quercetin, 4'-hydroxywogonin, sinensetin, 5, 7, 8, 3', 4'-pentamethoxyflavanone, 8-gingerdione and quercetin) were identified as the active ingredients, and five LZXP targets (AKT1, CYP1B1, PTGS2, MMP9 and EGFR) were found to be the crucial molecules in the treatment of GPL. This study provides a systematic and applicable method for the rapid screening and identification of the chemical constituents from LZXP, and an effective understanding the mechanism of LZXP in the treatment of GPL.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Quercetina , Farmacología en Red , Espectrometría de Masas/métodos
11.
Phytomedicine ; 108: 154491, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368285

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for almost 85% of lung cancer-related deaths worldwide. Xihuang Pill (XHP) is a representative anticancer Chinese patented medicine used to treat NSCLC in China. However, to date, a systematic analysis of XHP's antitumour effects and its impact on the immune microenvironment has not been performed. PURPOSE: Based on the systems biology strategy and experimental validation, the present study aimed to investigate the pharmacological mechanisms involved in treating NSCLC with XHP. METHODS: A subcutaneous tumour model was established to evaluate XHP's tumour-inhibitory effect in BALB/c nude mice. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify differentially expressed genes (DEGs) and signalling pathways related to XHP treatment. Network analysis based on network pharmacology and protein-to-protein networks was applied to identify the compounds and genes targeted by XHP. External data from the TCGA-NSCLC cohort were used to verify the clinical significance of XHP-targeted genes in NSCLC. The expression of survival-related candidate genes after XHP treatment was verified via qPCR. The protein expression of calcium voltage-gated channel subunit alpha 1C (CACNA1C) in different NSCLC cell lines was analysed in the Human Protein Atlas database (HPA) and DepMap Portal. Using the Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm and the single-sample gene set enrichment analysis (ssGSEA) algorithm uncovered the role of CACNA1C in the NSCLC tumour microenvironment (TME). RESULTS: XHP (2 g/kg/d) significantly inhibited the growth of transplanted A549 tumours. RNA-seq identified a total of 529 DEGs (189 upregulated and 340 downregulated). In addition, 542 GO terms, 41 significant KEGG pathways, 9 upregulated hallmarks pathways, and 18 downregulated hallmark pathways were enriched. These GO terms and signalling pathways were closely related to cell proliferation, immunity, energy metabolism, and the inflammatory response of NSCLC. In addition, XHP's network pharmacology analysis identified 301 compounds and 1,432 target genes. A comprehensive strategic analysis identified CACNA1C as a promising gene by which XHP targets and regulates the TME of NSCLC, benefiting patient survival. CACNA1C expression was positively correlated with both the immune score and stromal score but negatively correlated with the tumour purity score. Additionally, CACNA1C expression was significantly correlated with the infiltration levels of 15 types of immune cells and the expression levels of 6 well-known checkpoint genes. CONCLUSIONS: Our results show that by regulating the pathways associated with cell proliferation and immunity, XHP can suppress cancer cell growth in NSCLC. Additionally, XHP may increase the expression of CACNA1C to suppress immune cell infiltration and regulate the expression of checkpoint-related genes, thereby improving the overall survival of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Biología de Sistemas , Ratones Desnudos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
12.
Artículo en Inglés | MEDLINE | ID: mdl-36193144

RESUMEN

Objective: This research aimed at better understanding the histopathological development of precancerous lesions of gastric cancer (PLGC) and organelle ultrastructure changes. Methods: Sprague-Dawley rats were randomly assigned to the model and control groups. Model rats drank N-methyl-N'-nitro-N-nitrosoguanidine solution, while control rats drank pure water ad libitum. At 1, 3, 5, 6, and 8 months after the start of feeding, eight rats were randomly chosen from each group, and gastric mucosa tissues were removed for histopathological analysis. H&E staining was applied to analyze the pathological histological structure of the rat gastric mucosa via a light microscope, and the ultrastructural changes were observed via a transmission electron microscope. Results: Gastric mucosal pathologies of model rats such as mucosal atrophy, intestinal metaplasia, inflammatory lesions, and even intraepithelial neoplasia deteriorated over time. The endoplasmic reticulum gap widened, the mitochondrial endothelial cristae were disrupted, the nuclear membrane thickened, and chromatin condensed with heterotypic alterations in the main and parietal cells. Additionally, endothelial cell enlargement and thickening of the microvascular intima were seen. Conclusion: Our research showed that the PLGC progression of rats is correlated with the pathological alteration axis of "normal gastric mucosa-gastric mucosa inflammatory changes-intestinal metaplasia with mild dysplasia-moderate to severe dysplasia." Ultrastructure analysis of model rats is compatible with the structural changes in the gastric mucosa with spleen deficiency and blood stasis. The pathological evolutionary axis and ultrastructural analysis are helpful for evaluating potential novel herbal therapies for PLGC.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36034939

RESUMEN

Objective: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with a poor prognosis. The AT-rich interaction domain (ARID) family plays an essential regulatory role in the pathogenesis and progression of cancers. This study aims to evaluate the prognostic value and clinical significance of human ARID family genes in HCC. Methods: ONCOMINE and The Cancer Genome Atlas (TCGA) databases were employed to retrieve ARIDs expression profile and clinicopathological information of HCC. Kaplan-Meier plotter and MethSurv were applied to the survival analysis of patients with HCC. CBioPortal was used to analyze genetic mutations of ARIDs. Gene Expression Profiling Interactive Analysis (GEPIA) and Metascape were used to perform hub gene identification and functional enrichment. Results: Expression levels of 11 ARIDs were upregulated in HCC, and 2 ARIDs were downregulated. Also, 4 ARIDs and 5 ARIDs were correlated with pathologic stages and histologic grades, respectively. Furthermore, higher expression of ARID1A, ARID1B, ARID2, ARID3A, ARID3B, ARID5B, KDM5A, KDM5B, KDM5C, and JARID2 was remarkably correlated with worse overall survival of patients with HCC, and the high ARID3C/KDM5D expression was related to longer overall survival. Multivariate Cox analysis indicated that ARID3A, KDM5C, and KDM5D were independent risk factors for HCC prognosis. Moreover, ARIDs mutations and 127 CpGs methylation in all ARIDs were observed to be significantly associated with the prognosis of HCC patients. Besides, our data showed that ARIDs could regulate tumor-related pathways and distinct immune cells in the HCC microenvironment. Conclusions: ARIDs present the potential prognostic value for HCC. Our findings suggest that ARID3A, KDM5C, and KDM5D may be the prognostic biomarkers for patients with HCC.

14.
Front Psychiatry ; 13: 825198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599766

RESUMEN

Background: Childhood maltreatment is known as a significant risk factor for later depression. However, there remains a lack of understanding about the mechanisms through which childhood maltreatment confers risk for depression. This study explores how Qi-stagnation constitution (QSC) and emotion regulation affect the link between childhood maltreatment and depressive symptoms in Chinese college students. Methods: We recruited 2,108 college students aged 18-25 years between November 2020 and December 2021. Participants were required to complete four self-report questionnaires, including the Childhood Trauma Questionnaire-Short Form (CTQ-SF), Qi-Stagnation Constitution (QSC) subscale of the simplified Chinese Medicine Constitution Questionnaire, Difficulties in Emotion Regulation Scale (DERS), and the Beck Depression Inventory-II (BDI-II). Moderated mediation analyses were conducted. Results: There was a positive correlation between childhood maltreatment and QSC, while the QSC partially mediated the effect of childhood maltreatment on depressive scores in college students. In addition, emotion dysregulation moderated the association between QSC and depressive scores. Conclusion: These results enhance understanding of key factors influencing the link between childhood maltreatment and depressive symptoms among college students by combining the theory of TCM constitution with psychological processes. The development of strategies to prevent biased Qi-stagnation constitution and emotion dysregulation may help to improve college students' mental health and strengthen the resilience of individuals to depression.

15.
Phytomedicine ; 91: 153689, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34446320

RESUMEN

BACKGROUND: Intrinsic and acquired chemoresistance remains a critical challenge in lung cancer chemotherapy. Fanconi anemia (FA) pathway plays an important role in antagonizing the cytotoxic effects of chemotherapeutics by repairing DNA damage. We recently demonstrated that the traditional Chinese medicinal herb, Centipeda minima (C. minima), possessed anti-inflammatory and antioxidant properties. However, the potential anticancer application of C. minima and the underlying mechanisms remain unclear. PURPOSE: We aimed to investigate the combined anticancer effects of the ethanol extract of C. minima (ECM) and DNA-crosslinking agents on non-small cell lung cancer (NSCLC) and elucidate the underlying mechanisms. METHODS: Cell viability and flow cytometry assay were performed to determine the synergistic cytotoxicity of ECM and DNA-crosslinking agents, cisplatin (CDDP) or mitomycin C (MMC), in NSCLC cells. Western blotting and immunofluorescence were conducted to examine the effects of ECM on protein expression in DNA damage repair pathway. Comet assay was applied to evaluate DNA damage levels. Subcutaneous xenografts of NSCLC were established to evaluate the combined anticancer effects of ECM and CDDP. RESULTS: Combined treatments with ECM and DNA-crosslinking agents exhibited synergistic cytotoxic effects against A549 and H1299 cells. FANCD2 was highly expressed in NSCLC that correlates with poor prognosis of NSCLC patients, based on the online database analysis. ECM significantly inhibited DNA damage-induced monoubiquitination and nuclear foci formation of FANCD2, thereby sensitizing NSCLC to CDDP- or MMC-induced DNA damage and apoptosis, as evidenced by increased expression of γ-H2AX, increased cleavage of caspases-3 and PARP, and enhanced Annexin V-FITC/PI staining. Further, ECM can also decrease the protein level of FANCD2 that contributes to the chemosensitizing effects. Moreover, ECM significantly attenuated CDDP-mediated S-phase arrest by antagonizing the activation of ATR/Chk1 pathway in NSCLC cells. Animal experiments further demonstrated that ECM and CDDP combination treatment synergistically inhibited tumor growth by decreasing FANCD2 protein level in tumor tissues. CONCLUSION: Our results demonstrated that ECM can inhibit DNA-crosslinking agents-induced activation of FA pathway by attenuating both the expression and monoubiquitination of FANCD2. ECM and CDDP combination therapy exhibited synergistic anticancer effects both in vitro and in vivo, indicating that ECM and its active components might serve as novel anticancer drugs in the combination chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos , Asteraceae/química , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Extractos Vegetales , Animales , Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Oxid Med Cell Longev ; 2021: 6660616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936383

RESUMEN

Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H2O2-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H2O2. After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism.


Asunto(s)
Antígenos de Superficie/metabolismo , ADN Mitocondrial/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Peróxido de Hidrógeno/efectos adversos , Proteínas de Neoplasias/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Humanos , Dinámicas Mitocondriales/efectos de los fármacos , Mioblastos/metabolismo , Biogénesis de Organelos , Ratas
17.
Artículo en Inglés | MEDLINE | ID: mdl-35027931

RESUMEN

OBJECTIVE: The medical record of Chinese medicine is a miniature of the theoretical system of traditional Chinese medicine (TCM), with a time-honored history in a real-world setting and a firm place in medicine. In modern times, people have emphasized the value and standardization of TCM cases. The aim of this study was to explore the historical origins and developments of TCM case records. METHODS: A chronological narrative style was used to divide the development history of TCM case records into early (1600 BC-220 AD), middle (220-1911 AD), and modern periods (1912-till now). The historical context of the origin and development of TCM case records was analyzed through the evolution of the format and content of the case recording files with the specific documents and distinctive cases. RESULTS: From the early to middle period, the development of TCM case record had experienced four periods: the budding, blossoming, maturity, and heyday. In modern times, they presented the following characteristics: A, the establishment and development of the discipline of TCM medical records; B, the standardization of the writing format of TCM medical records; C, a large number of books concentrating on recording and studying TCM medical records, especially those of prestigious veteran TCM doctors; D, the proliferation of TCM case reports published in journals; E, the establishment of TCM medical records databases and application platforms integrating computer programs and artificial intelligence; F, many reporting guidelines have been developed in order to improve the reporting quality of case report in TCM. CONCLUSIONS: The study analyzed and illustrated the characteristics of TCM case records of different dynasties in terms of writing content and format. TCM case record is a relatively young discipline in spite of its ancient origins. TCM case records still have far-reaching significance for the inheritance and development of TCM theory and clinical experience. From the wisdom of history, its positive impact has just been revalued to be validated and it will continue to develop.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32454874

RESUMEN

Gastric precancerous lesions (GPLs) are an essential precursor in the occurrence and development of gastric cancer, known to be one of the most common and lethal cancers worldwide. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and therapy of GPL owing to several advantages including a definite curative effect, fewer side effects compared to other treatments, multiple components, and holistic regulation. Despite these characteristic advantages, the mechanisms of TCM in treating GPL have not been fully elucidated. In this review, we summarize the current knowledge with respect to herbal formulations and the therapeutic mechanisms of TCM active ingredients for GPL. This paper elaborates on the mechanisms of TCM underlying the prevention and treatment of GPL, specifically those that are linked to anti-H. pylori, anti-inflammation, antiproliferation, proapoptotic, antioxidation, antiglycolytic, and antiangiogenesis effects.

19.
Rejuvenation Res ; 23(5): 420-433, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32242481

RESUMEN

Effective drugs for treating dementia are still rare. Danggui-Shaoyao San (DSS), a traditional Chinese medicine, has been widely used in oriental countries for the treatment of various gynecological diseases. Many studies reported that DSS could ameliorate cognitive impairment. In this study, we aimed to investigate the underlying mechanism of DSS on vascular cognitive impairment (VCI) rats. Chronic cerebral hypoperfusion (CCH) is one of the main causes of VCI. CCH resulted in a chain of pathological process, including neuroinflammation, neuronal apoptosis, and oxidative stress. The most widely used animal model of VCI is permanent bilateral common carotid artery occlusion in rats. In this research, we determined whether DSS attenuated cognitive impairment by targeting I kappa B kinase (IKK)/nuclear factor of kappa B (NF-κB) signal pathway in VCI rats. Morris water maze and fear conditioning tests results indicated that DSS [7.2 g/(kg·d)] could improve learning and memory ability in VCI rats. We also found DSS significantly elevated the levels of low-density lipoprotein receptor-related protein 1 (LRP1) in the brain of VCI rats and this might indirectly target the IKK/NF-κB signal pathway to exert inhibitory effect on neuroinflammation, neuronal apoptosis, and oxidative stress in VCI rats. The present researches indicated that DSS might attenuate cognitive impairment by targeting IKK/NF-κB signal pathway in VCI rats and DSS might be a promising agent on VCI.


Asunto(s)
Disfunción Cognitiva , Medicina Tradicional China , Fármacos Neuroprotectores , Animales , Disfunción Cognitiva/tratamiento farmacológico , Lipoproteínas LDL , Memoria , Fármacos Neuroprotectores/uso terapéutico , Ratas
20.
Artículo en Inglés | MEDLINE | ID: mdl-32076440

RESUMEN

Gastric cancer, one of the most common types of cancers, develops over a series of consecutive histopathological stages. As such, the analysis and research of the gastric precancerous lesions (GPLs) play an important role in preventing the occurrence of gastric cancer. Ginsenoside Rg3 (Rg3), an herbal medicine, plays an important role in the prevention and treatment of various cancers. Studies have demonstrated a correlation between glycolysis and gastric cancer progression. Herein, the aim of the present study was to clarify the potential role for glycolysis pathogenesis in Rg3-treated GPL in Atp4a-/- mice. The GPL mice model showed chronic gastritis, intestinal metaplasia, and more atypical hyperplasia in gastric mucosa. According to the results of HE and AB-PAS staining, it could be confirmed that GPL mice were obviously reversed by Rg3. Additionally, the increased protein levels of PI3K, AKT, mTOR, HIF-1α, LDHA, and HK-II, which are crucial factors for evaluating GPL in the aspect of glycolysis pathogenesis in the model group, were downregulated by Rg3. Meanwhile, the miRNA-21 expression was decreased and upregulated by Rg3. Furthermore, the increased gene levels of Bcl-2 and caspase-3 were attenuated in Rg3-treated GPL mice. In conclusion, the findings of this study imply that abnormal glycolysis in GPL mice was relieved by Rg3 via regulation of the expressions of PI3K, AKT, mTOR, HIF-1α, LDHA, HK-II, and miRNA-21. Rg3 is an effective supplement for GPL treatment and can be harnessed to inhibit proliferation and induce apoptosis of GPL cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA