RESUMEN
A new heterodimeric crown amphiphile was fabricated, wherein the oxacrown and selencrown ethers provided the desired molecular framework for hydrophilicity and hydrophobicity, respectively. From an integrated perspective, the developed amphiphile possesses features of crown ethers, amines, and selenium-containing species, and its assembly in water can be responsive to diverse chemical effectors-H2O2 and CO2 in a switchable ON/OFF mode to achieve controlled release. It is the first case wherein the applications of cyclic polyethers with different solubilities drives the self-assembly in an aqueous medium.
RESUMEN
A Ca(2+) -responsive artificial selenoenzyme was constructed by computational design and engineering of recoverin with the active center of glutathione peroxidase (GPx). By combining the recognition capacity for the glutathione (GSH) substrate and the steric orientation of the catalytic selenium moiety, the engineered selenium-containing recoverin exhibits high GPx activity for the catalyzed reduction of H2 O2 by glutathione (GSH). Moreover, the engineered selenoenzyme can be switched on/off by Ca(2+) -induced allosterism of the protein recoverin. This artificial selenoenzyme also displays excellent antioxidant ability when it was evaluated using a mitochondrial oxidative damage model, showing great potential for controlled catalysis in biomedical applications.