Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1320279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260910

RESUMEN

Introduction: Enteric dysbacteriosis is strongly associated with nonalcoholic fatty liver disease (NAFLD). However, the underlying causal relationship remains unknown. Thus, the present study aimed to investigate the relationship between gut microbiota and NAFLD using Mendelian randomization (MR) and analyze the target genes potentially regulated by specific microbiota. Methods: Bidirectional two-sample MR analysis was performed using inverse variance weighted (IVW) supplemented by MR-Egger, weighted median, simple mode, and weighted mode methods. Data were pooled from gut microbiota and NAFLD association studies. The least absolute shrinkage, selection operator regression, and the Support Vector Machine algorithm were used to identify genes regulated by these intestinal flora in NAFLD. The liver expression of these genes was verified in methionine choline-deficient (MCD) diet-fed mice. Results: IVW results confirmed a causal relationship between eight specific gut microbes and NAFLD. Notably, the order Actinomycetales, NB1n, the family Actinomycetaceae, Oxalobacteraceae and the genus Ruminococcaceae UCG005 were positively correlated, whereas Lactobacillaceae, the Christensenellaceae R7 group, and Intestinibacter were negatively correlated with NAFLD onset. In NAFLD, these eight bacteria regulated four genes: colony-stimulating factor 2 receptor ß, fucosyltransferase 2, 17-beta-hydroxysteroid dehydrogenase 14, and microtubule affinity regulatory kinase 3 (MAPK3). All genes, except MARK3, were differentially expressed in the liver tissues of MCD diet-fed mice. Discussion: The abundance of eight gut microbiota species and NAFLD progression displayed a causal relationship based on the expression of the four target genes. Our findings contributed to the advancement of intestinal microecology-based diagnostic technologies and targeted therapies for NAFLD.

2.
Eur J Pharmacol ; 917: 174720, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953801

RESUMEN

Autoimmune hepatitis (AIH) is a chronic progressive liver disease that currently does not have a successful therapeutic option. Vitexin, a bioflavonoid isolated from various medicinal plants, possesses a variety of activities; however, whether vitexin protects against AIH remains unclear. Therefore, the current study aims to investigate the hepatoprotective effects and mechanism of action of vitexin in both an experimental autoimmune hepatitis (EAH) mouse model and in D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatocyte injury. Syngeneic liver antigen S100 was used to establish EAH. Vitexin treatment significantly decreased the infiltration of inflammatory and CD4+ T cells in the liver, reduced ALT and AST levels in the serum and attenuated hepatic injury due to oxidative stress. Moreover, vitexin mitigated the upregulation of Bax and cleaved caspase-3 and the downregulation of Bcl-2 in the livers of AIH mice. These regulations were accompanied by not only increased phosphorylation of AMPK, AKT and GSK-3ß but also activation of Nrf2. Furthermore, vitexin inhibited apoptosis and the overexpression of inflammatory cytokines in D-GalN/LPS-treated AML12 cells. In addition, vitexin enhanced the phosphorylation of AMPK, AKT and GSK-3ß. When AML12 cells were treated with an inhibitor of AMPK/AKT or specific siRNA targeting Nrf2, vitexin did not further induce the activation of Nrf2/HO-1. A molecular docking study confirmed that vitexin could interact with AMPK through hydrogen bonding interactions. In conclusion, vitexin ameliorated hepatic injury in EAH mice through activation of the AMPK/AKT/GSK-3ß pathway and upregulation of the Nrf2 gene.


Asunto(s)
Factor 2 Relacionado con NF-E2
3.
Front Physiol ; 11: 369, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457642

RESUMEN

Impaired intestinal barrier function and oxidative stress injury play critical roles in the pathogenesis of alcoholic liver disease (ALD), and recent investigations have revealed a role for dietary copper in the liver and intestinal barrier function. Therefore, the current study investigates the mechanisms and role of dietary copper in alcohol induced liver diseases. C57BL/6 mice were used to create an alcoholic liver disease model with a Lieber-DeCarli diet containing 5% alcohol and were fed with different concentrations of dietary copper of adequate (6 ppm, CuA), marginal (1.5 ppm, CuM), or supplemental (20 ppm, CuS) amounts. Caco-2 cells were also exposed to ethanol and different concentrations of copper. Damages of the liver and intestine were evaluated by transaminases, histology staining, and protein and mRNA level, as well as cell proliferation, oxidative stress, and mitochondrial membrane potential. In animal experiments, the results indicate that an alcohol diet causes liver injury and disruption of intestinal barrier function as well as decreasing the expression of genes such as HIF-1α, occludin, SOD1, and GPX1. Supplemental dietary copper can revert these changes except for SOD1, but marginal dietary copper can worsen these changes. The in vitro cell experiments showed that proper copper supplementation can promote cell growth and reduce reactive oxygen species (ROS) production. In conclusion, supplemental dietary copper has beneficial effects on alcohol-induced intestine and liver injury, and marginal dietary copper shows detrimental effects on these parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA