Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34549785

RESUMEN

The identification of environmentally stable and globally predictable resistance to potato late blight is challenged by the clonal and polyploid nature of the crop and the rapid evolution of the pathogen. A diversity panel of tetraploid potato germplasm bred for multiple resistance and quality traits was genotyped by genotyping by sequencing (GBS) and evaluated for late blight resistance in three countries where the International Potato Center (CIP) has established breeding work. Health-indexed, in vitro plants of 380 clones and varieties were distributed from CIP headquarters and tuber seed was produced centrally in Peru, China, and Ethiopia. Phenotypes were recorded following field exposure to local isolates of Phytophthora infestans. QTL explaining resistance in four experiments conducted across the three countries were identified in chromosome IX, and environment-specific QTL were found in chromosomes III, V, and X. Different genetic models were evaluated for prediction ability to identify best performing germplasm in each and all environments. The best prediction ability (0.868) was identified with the genomic best linear unbiased predictors (GBLUPs) when using the diploid marker data and QTL-linked markers as fixed effects. Genotypes with high levels of resistance in all environments were identified from the B3, LBHT, and B3-LTVR populations. The results show that many of the advanced clones bred in Peru for high levels of late blight resistance maintain their resistance in Ethiopia and China, suggesting that the centralized selection strategy has been largely successful.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Humanos , Phytophthora infestans/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Tetraploidía
2.
BMC Microbiol ; 19(1): 205, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477005

RESUMEN

BACKGROUND: Cross-resistance, a phenomenon that a pathogen resists to one antimicrobial compound also resists to one or several other compounds, is one of major threats to human health and sustainable food production. It usually occurs among antimicrobial compounds sharing the mode of action. In this study, we determined the sensitivity profiles of Alternaria alternata, a fungal pathogen which can cause diseases in many crops to two fungicides (mancozeb and difenoconazole) with different mode of action using a large number of isolates (234) collected from seven potato fields across China. RESULTS: We found that pathogens could also develop cross resistance to fungicides with different modes of action as indicated by a strong positive correlation between mancozeb and difenoconazole tolerances to A. alternata. We also found a positive association between mancozeb tolerance and aggressiveness of A. alternata, suggesting no fitness penalty of developing mancozeb resistance in the pathogen and hypothesize that mechanisms such as antimicrobial compound efflux and detoxification that limit intercellular accumulation of natural/synthetic chemicals in pathogens might account for the cross-resistance and the positive association between pathogen aggressiveness and mancozeb tolerance. CONCLUSIONS: The detection of cross-resistance among different classes of fungicides suggests that the mode of action alone may not be an adequate sole criterion to determine what components to use in the mixture and/or rotation of fungicides in agricultural and medical sects. Similarly, the observation of a positive association between the pathogen's aggressiveness and tolerance to mancozeb suggests that intensive application of site non-specific fungicides might simultaneously lead to reduced fungicide resistance and enhanced ability to cause diseases in pathogen populations, thereby posing a greater threat to agricultural production and human health. In this case, the use of evolutionary principles in closely monitoring populations and the use of appropriate fungicide applications are important for effective use of the fungicides and durable infectious disease management.


Asunto(s)
Alternaria/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , Alternaria/genética , Alternaria/aislamiento & purificación , Alternaria/fisiología , China , Dioxolanos/farmacología , Maneb/farmacología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Triazoles/farmacología , Zineb/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA