Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Tradicionales
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(7): e29202, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623209

RESUMEN

Limonia acidissima Groff, commonly referred to as the Wood apple, is a tropical fruit belonging to Rutaceae family. Indigenous to Sri Lanka, India, and Myanmar, it is extensively cultivated throughout Southeast Asia. This fruit holds a profound historical significance in traditional medicine due to its exceptional nutritional and therapeutic attributes. Wood apple pulp is significantly abundant in ß-carotene, a precursor to vitamin A, and contains a substantial amount of vitamin B, including riboflavin and thiamine, as well as trace amounts of ascorbic acid (vitamin C). Moreover health-benefitting properties associated with L. acidissima, such as, antioxidant, hepatoprotective, antimicrobial, neuroprotective, antidiabetic, anti-inflammatory, anti-spermatogenic, analgesic, antiulcer, and antihyperlipidemic properties, are attributed to a diverse range of phytochemicals. These encompass polyphenolic compounds, saponins, phytosterols, tannins, triterpenoids, coumarins, amino acids, tyramine derivatives, and vitamins. From the findings of the various studies, it was observed that wood apple fruit shows significant anticancer activity by inhibiting the proliferation of cancer. Furthermore, wood apple finds wide-ranging commercial applications in the formulation of ready-to-serve beverages, syrups, jellies, chutneys, and various other food products. In summary, this review highlights the nutritional and phytochemical constituents of wood apple, depicts its antioxidant, anti-inflammatory, and anti-diabetic capabilities, and explores its potential in value-added product development. Nevertheless, it is crucial to acknowledge that the molecular mechanisms supporting these properties remain an underexplored domain. To ensure the safe integration of wood apple fruit into the realms of the food, cosmetics, and pharmaceutical sectors, rigorous clinical trials, including toxicity assessments, are required. These endeavors hold the potential to promote innovation and contribute significantly to both research and industrial sectors.

2.
Chem Biodivers ; 20(11): e202301086, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37851484

RESUMEN

BACKGROUND: In Vedic context, Nirgundi (V. negundo) has been utilized for its anti-inflammatory, analgesic, and wound-healing properties. It has been employed to alleviate pain, treat skin conditions, and address various ailments. The plant's leaves, roots, and seeds have all found applications in traditional remedies. The knowledge of Nirgundi's medicinal benefits has been passed down through generations, and it continues to be a part of Ayurvedic and traditional medicine practices in India.


Asunto(s)
Fitoterapia , Vitex , Vitex/química , Medicina Tradicional , India , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis
3.
Food Chem ; 428: 136783, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450955

RESUMEN

Tea residues represent one of the major agricultural wastes that are generated after the processing of tea. They account for 21-28% of crude protein and are often discarded without the extraction of valuable proteins. Due to various bioactivity and functional properties, tea proteins are an excellent alternative to other plant-based proteins for usage as food supplements at a higher dosage. Moreover, their good gelation capacity is ideal for the manufacturing of dairy products, jellies, condensation protein, gelatin gel, bread, etc. The current study is the first to comprehend various tea protein extraction methods and their amino acid profile. The preparation of tea protein bioactive peptides and hydrolysates are summarized. Several functional properties (solubility, foaming capacity, emulsification, water/oil absorption capacity) and bioactivities (antioxidant, antihypertensive, antidiabetic) of tea proteins are emphasized.


Asunto(s)
Camellia sinensis , Camellia sinensis/química , Té/química , Antioxidantes/química , Proteínas de Plantas , Péptidos
4.
Bioengineering (Basel) ; 10(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671686

RESUMEN

Owing to the demand for the consumption of healthy extrudates, this study explored the infusion of neera (coconut inflorescence sap) honey in rice flour, corn flour and coconut milk residue blend-based extrudates. Neera honey, the concentrated coconut inflorescence sap, has numerous nutrients and a natural source of essential vitamins. Hence, the potential of neera honey as a biofortifying compound for the production of healthy extrudates was investigated. The rice and corn based extrudates supplemented with different concentration of neera honey have been prepared until the mix reaches 16 and 20% (w.b.) of feed moisture. Effect of addition of neera honey on the physical properties (expansion ratio, bulk density, specific length), functional properties (water absorption, water solubility, oil absorption), biochemical properties (total carbohydrates, total sugar, reducing sugar, phenolics, flavonoids, antioxidants), color parameters(L*, a*, b*), proximate compositions (moisture content, ash, protein, fat) and mineral profile of extrudates were recorded. Results suggest that addition of neera honey had a significant (p ˂ 0.05) impact on all the physico-chemical parameters evaluated. Incorporation of neera honey (feed moisture -20%) resulted in extrudates with less expansion, high bulk density and specific length, having high sugar, protein, phenolics, vitamin C and antioxidant activity. The combination of 60% rice flour + 25% corn flour +15% coconut milk residue samples infused with neera honey upto 16% feed moisture was found suitable for the preparation of nutritious extrudates based on functional characterization and minerals evaluation.

5.
Int J Biol Macromol ; 229: 463-475, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36563821

RESUMEN

Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.


Asunto(s)
Tinospora , Humanos , Tinospora/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Polisacáridos/farmacología
6.
J Sci Food Agric ; 103(1): 370-379, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36373792

RESUMEN

BACKGROUND: Cocos nucifera (L.) is an important plantation crop with immense but untapped nutraceutical potential. Despite its bioactive potential, the biochemical features of testa oils of various coconut genotypes are poorly understood. Hence, in this study, the physicochemical characteristics of testa oils extracted from six coconut genotypes - namely West Coast Tall (WCT), Federated Malay States Tall (FMST), Chowghat Orange Dwarf (COD), Malayan Yellow Dwarf (MYD), and two Dwarf × Dwarf (D × D hybrids) viz., Cameroon Red Dwarf (CRD) × Ganga Bondam Green Dwarf (GBGD) and MYD × Chowghat Green Dwarf (CGD) - were analyzed. RESULTS: The proportion of testa in the nuts (fruits) (1.29-3.42%), the proportion of oil in the testa (40.97-50.56%), and biochemical components in testa oils - namely proxidant elements Fe (34.17-62.48 ppm) and Cu (1.63-2.77 ppm), and the total phenolic content (6.84-8.67 mg GAE/100 g), and phytosterol content (54.66-137.73 mg CE/100 g) varied depending on the coconut genotypes. The saturated fatty acid content of testa oils (67.75 to 78.78%) was lower in comparison with that of coconut kernel oils. Similarly, the lauric acid (26.66-32.04%), myristic (18.31-19.60%), and palmitic acid (13.43-15.71%,) content of testa oils varied significantly in comparison with the coconut kernel oils (32-51%, 17-21% and 6.9-14%, respectively). Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of 18 phenolic acids in coconut testa oil. Multivariate analysis revealed the biochemical attributes that defined the principal components loadings. Hierarchical clustering analysis of the genotypes showed two distinct clusters. CONCLUSION: This study reveals the genotypic variations in the nutritionally important biochemical components of coconut testa oils. The relatively high concentration of polyunsaturated fatty acids (PUFA) and polyphenol content in testa oils warrant further investigation to explore their nutraceutical potential. © 2022 Society of Chemical Industry.


Asunto(s)
Cocos , Ácidos Grasos , Cocos/genética , Cocos/química , Ácidos Grasos/análisis , Aceite de Coco/química , Ácidos Grasos Insaturados , Genotipo , Aceites de Plantas/química
7.
J Food Sci ; 87(10): 4289-4311, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36101019

RESUMEN

Functional food development is rapidly increasing as a result of consumer consciousness concerning healthy and nutritious foods. In turn, research exploring novel ingredients for formulating functional foods has been accelerated. Onion peel or skin is a byproduct obtained from onion processing that contains abundant phytochemicals, contributing to its antioxidant potential. The main focus of this review is to highlight different extraction techniques (both conventional and nonconventional) that can be implemented to extract the bioactive compounds from onion peel and assess their antioxidant activity. Furthermore, this review highlights the major areas for the application of onion peel and its extract as prospective functional ingredients, thus aiding in the preparation of designer foods with additional health benefits. The use of onion peel could also assist in redesigning popularly consumed processed foods, such as baked products, noodles or pasta, as packaging material, meat quality improvers, colorants, and juice clarifiers. This review serves as a preliminary document that can assist in exploring different ways of incorporating bioactive onion peels or skin into the functional food industry and concludes that future research can assist in the effective and efficient utilization of this resource.


Asunto(s)
Ingredientes Alimentarios , Cebollas , Cebollas/química , Antioxidantes , Alimentos Funcionales , Estudios Prospectivos , Extractos Vegetales/química
8.
Int J Biol Macromol ; 219: 1047-1061, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35914557

RESUMEN

Allium cepa (onion) and Allium sativum (garlic) are important members of the Amaryllidaceae (Alliaceae) family and are being used both as food and medicine for centuries in different parts of the world. Polysaccharides have been extracted from different parts of onion and garlic such as bulb, straw and cell wall. The current literature portrays several studies on the extraction of polysaccharides from onion and garlic, their modification and determination of their structural (molecular weight, monosaccharide unit and their arrangement, type and position of glycosidic bond or linkage, degree of polymerization, chain conformation) and functional properties (emulsifying property, moisture retention, hygroscopicity, thermal stability, foaming ability, fat-binding capacity). In this line, this review, summarizes the various extraction techniques used for polysaccharides from onion and garlic, involving methods like solvent extraction method. Furthermore, the antioxidant, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, and antidiabetic properties of onion and garlic polysaccharides as reported in in vivo and in vitro studies are also critically assessed in this review. Different studies have proved onion and garlic polysaccharides as potential antioxidant and immunomodulatory agent. Studies have implemented to improve the functionality of onion and garlic polysaccharides through various modification approaches. Further studies are warranted for utilizing onion and garlic polysaccharides in the food, nutraceutical, pharmaceutical and cosmetic industries.


Asunto(s)
Antiinfecciosos , Ajo , Antioxidantes/farmacología , Ajo/química , Hipoglucemiantes , Monosacáridos , Cebollas/química , Preparaciones Farmacéuticas , Polisacáridos/química , Polisacáridos/farmacología , Solventes
9.
Molecules ; 27(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630725

RESUMEN

The number of food frauds in coconut-based products is increasing due to higher consumer demands for these products. Rising health consciousness, public awareness and increased concerns about food safety and quality have made authorities and various other certifying agencies focus more on the authentication of coconut products. As the conventional techniques for determining the quality attributes of coconut are destructive and time-consuming, non-destructive testing methods which are accurate, rapid, and easy to perform with no detrimental sampling methods are currently gaining importance. Spectroscopic methods such as nuclear magnetic resonance (NMR), infrared (IR)spectroscopy, mid-infrared (MIR)spectroscopy, near-infrared (NIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy (RS) are gaining in importance for determining the oxidative stability of coconut oil, the adulteration of oils, and the detection of harmful additives, pathogens, and toxins in coconut products and are also employed in deducing the interactions in food constituents, and microbial contaminations. The objective of this review is to provide a comprehensive analysis on the various spectroscopic techniques along with different chemometric approaches for the successful authentication and quality determination of coconut products. The manuscript was prepared by analyzing and compiling the articles that were collected from various databases such as PubMed, Google Scholar, Scopus and ScienceDirect. The spectroscopic techniques in combination with chemometrics were shown to be successful in the authentication of coconut products. RS and NMR spectroscopy techniques proved their utility and accuracy in assessing the changes in coconut oil's chemical and viscosity profile. FTIR spectroscopy was successfully utilized to analyze the oxidation levels and determine the authenticity of coconut oils. An FT-NIR-based analysis of various coconut samples confirmed the acceptable levels of accuracy in prediction. These non-destructive methods of spectroscopy offer a broad spectrum of applications in food processing industries to detect adulterants. Moreover, the combined chemometrics and spectroscopy detection method is a versatile and accurate measurement for adulterant identification.


Asunto(s)
Cocos , Espectrometría Raman , Aceite de Coco , Aceites de Plantas/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA