Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnobiol Ethnomed ; 18(1): 41, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637487

RESUMEN

BACKGROUND: Evidence suggests that plants can behave intelligently by exhibiting the ability to learn, make associations between environmental cues, engage in complex decisions about resource acquisition, memorize, and adapt in flexible ways. However, plant intelligence is a disputed concept in the scientific community. Reasons for lack of consensus can be traced back to the history of Western philosophy, interpretation of terminology, and due to plants lacking neurons and a central nervous system. Plant intelligence thus constitutes a novel paradigm in the plant sciences. Therefore, the perspectives of scientists in plant-related disciplines need to be investigated in order to gain insight into the current state and future development of this concept. METHODS: This study analyzed opinions of plant intelligence held by scientists from different plant-related disciplines, including ethnobiology and other biological sciences, through an online questionnaire. RESULTS: Our findings show that respondents' personal belief systems and the frequency of taking into account other types of knowledge, such as traditional knowledge, in their own field(s) of study, were associated with their opinions of plant intelligence. Meanwhile, respondents' professional expertise, background (discipline), or familiarity with evidence provided on plant intelligence did not affect their opinions. CONCLUSIONS: This study emphasizes the influential role of scientists' own subjective beliefs. In response, two approaches could facilitate transdisciplinary understanding among scientists: (1) effective communication designed to foster change in agreement based on presented information; and (2) holding space for an interdisciplinary dialogue where scientists can express their own subjectivities and open new opportunities for collaboration.


Asunto(s)
Lenguaje , Plantas , Actitud , Inteligencia , Conocimiento
2.
Waste Manag ; 136: 162-173, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678658

RESUMEN

Phytoremediation is a potentially suitable technique for the reclamation of toxic landfill leachate (LL) by decreasing its volume through water uptake and improving its composition by uptake, accumulation and amelioration of pollutants. We investigated the use of two parameters, the LL concentration and the Leachate Pollution Index (LPI), a method used to determine the phytotoxicity potential of a leachate source based on a weighted sum of its components, to set the best LL dilution to apply when poplar clone 'Orion' and willow clone 'Levante' are selected for phytoremediation. Cuttings were watered with five LL concentrations ranging from 0 to 100%. The poplar clone showed significantly higher values than the willow clone for lowest effective concentration index (LOEC) for leaf (i.e. 11.3% vs 10.5%; p = 0.0284) and total biomass (i.e. 10.9% vs 10.6%; p = 0.0402) and for lowest effective LPI for leaf (i.e. 12.3 vs 12.1; p = 0.0359) and total biomass (i.e. 12.8 versus 12.2; p = 0.0365), respectively, with effectiveness demonstrating the LOEC or LPI value at which the parameter is negatively affected. Photosynthetic rates were higher in poplar than willow in both control and the lowest LL dilution, but rapidly declined in both at higher LL dilutions. Although a direct translation of data from bench trials to field conditions should be investigated, we concluded that in the establishment phase, the poplar hybrid is more tolerant than the willow hybrid to LL. We also provide evidence for LPI as a potential predictor for setting LL irrigation levels in the initial phase of a phyto-treatment approach.


Asunto(s)
Populus , Salix , Contaminantes Químicos del Agua , Biodegradación Ambiental , Biomasa , Contaminantes Químicos del Agua/toxicidad
3.
J Environ Manage ; 277: 111454, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33070021

RESUMEN

Phytotechnological approaches using living plants are currently being proposed to address a wide range of environmental purposes including the treatment of landfill leachate (LL). Despite their popularity, few studies have investigated this possibility under actual Mediterranean conditions using fast-growing trees. This research reports the results of a two-year project where poplar and willow grown in mesocosm were tested for their ability to withstand and remove specific pollutants from different [Low: 7% (1st year) and 15% (2nd year); High: 15% (1st year) and 30% (2nd year)] amounts of LL. Results indicate that both species were able to treat 340 (Low) and 680 (High) m3 ha-1 in the establishment year (70 days) and 2470 (Low) and 4950 (High) m3 ha-1 in the second year (150 days). Both species yielded the same aboveground biomass, but under high LL treatment, poplar performed better than willow. Poplar showed on average significantly higher extraction rates for Cd, Cu, P, and N than willow. Moreover, under high LL treatment, poplar also seemed more efficient than willow in decreasing the concentration of specific pollutants (BOD5, COD and As) in output effluent. However, with low LL loads both species were able to significantly reduce other compounds (i.e. NH4-N, Cu and Ni). By contrast, Cl, surfactants, and NO3-N, had a tendency to accumulate over time in the effluent and could still represent an actual constraint to large-scale application of the technique. The fate of such pollutants should be investigated with further research to better inform strategies used to manage low amounts of high-concentrated effluent.


Asunto(s)
Populus , Salix , Contaminantes Químicos del Agua , Biodegradación Ambiental , Clima
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA