Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Heliyon ; 10(6): e28078, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533072

RESUMEN

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.

2.
Trends Plant Sci ; 28(11): 1205-1207, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625948

RESUMEN

Elucidating biosynthetic pathways of plant specialized metabolites is a tricky but essential task for the biotechnological production of plant drugs. In a new report, Li et al. used a single-cell multi-omics approach to provide an integrative view of the architecture and regulation of anticancer alkaloid routes in Madagascar periwinkle.

3.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35947213

RESUMEN

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Asunto(s)
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
4.
Nat Plants ; 9(1): 22-30, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564633

RESUMEN

Plants biosynthesize a broad range of natural products through specialized and species-specific metabolic pathways that are fuelled by core metabolism, together forming a metabolic network. Specialized metabolites have important roles in development and adaptation to external cues, and they also have invaluable pharmacological properties. A growing body of evidence has highlighted the impact of translational, transcriptional, epigenetic and chromatin-based regulation and evolution of specialized metabolism genes and metabolic networks. Here we review the forefront of this research field and extrapolate to medicinal plants that synthetize rare molecules. We also discuss how this new knowledge could help in improving strategies to produce useful plant-derived pharmaceuticals.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/genética , Redes y Vías Metabólicas
5.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36300641

RESUMEN

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.


Asunto(s)
Plantas Medicinales , Voacanga , Plantas Medicinales/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Semillas , Genoma de Planta
6.
Plant Cell Physiol ; 63(2): 200-216, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166361

RESUMEN

Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.


Asunto(s)
Catharanthus , Monoterpenos , Alcaloides Indólicos , Metiltransferasas , Peroxisomas , Proteínas de Plantas , gamma-Tocoferol
7.
Trends Pharmacol Sci ; 43(7): 542-545, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35151502

RESUMEN

Recent chromosome-scale genomes from prominent medicinal plants have provided unprecedented insight into the architecture and evolution of some prominent metabolic pathways. These new technologies also facilitate the identification of plant drug biosynthetic genes and would likely accelerate the development of new bioengineering procedures to secure the supply of important plant-derived pharmaceuticals.


Asunto(s)
Redes y Vías Metabólicas , Plantas Medicinales , Cromosomas , Humanos
8.
F1000Res ; 11: 1541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761838

RESUMEN

The Madagascar periwinkle, Catharanthus roseus, belongs to the Apocynaceae family. This medicinal plant, endemic to Madagascar, produces many important drugs including the monoterpene indole alkaloids (MIA) vincristine and vinblastine used to treat cancer worldwide. Here, we provide a new version of the C. roseus genome sequence obtained through the combination of Oxford Nanopore Technologies long-reads and Illumina short-reads. This more contiguous assembly consists of 173 scaffolds with a total length of 581.128 Mb and an N50 of 12.241 Mb. Using publicly available RNAseq data, 21,061 protein coding genes were predicted and functionally annotated. A total of 42.87% of the genome was annotated as transposable elements, most of them being long-terminal repeats. Together with the increasing access to MIA-producing plant genomes, this updated version should ease evolutionary studies leading to a better understanding of MIA biosynthetic pathway evolution.


Asunto(s)
Catharanthus , Plantas Medicinales , Catharanthus/genética , Catharanthus/metabolismo , Genoma de Planta , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
9.
Comput Struct Biotechnol J ; 19: 3659-3663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257844

RESUMEN

Camptothecin is a clinically important monoterpene indole alkaloid (MIAs) used for treating various cancers. Currently, the production of this biopharmaceutical hinges on its extraction from camptothecin-producing plants, leading to high market prices and supply bottlenecks. While synthetic biology combined with metabolic approaches could represent an attractive alternative approach to manufacturing, it requires firstly a complete biosynthetic pathway elucidation, which is, unfortunately, severely missing in species naturally accumulating camptothecin. This knowledge gap can be attributed to the lack of high-quality genomic resources of medicinal plant species. In such a perspective, Yamazaki and colleagues produced the first described and experimentally validated chromosome-level plant genome assembly of Ophiorrhiza pumila, a prominent source plant of camptothecin for the pharmaceutical industry. More specifically, they have developed a method incorporating Illumina reads, PacBio single-molecule reads, optical mapping and Hi-C sequencing, followed by the experimental validation of contig orientation within scaffolds, using fluorescence in situ hybridization (FISH) analysis. This relevant strategy resulted in the most contiguous and complete de novo plant reference genome described to date, which can streamline the sequencing of new plant genomes. Further mining approaches, including integrative omics analysis, phylogenetics, gene cluster evaluation and comparative genomics were successfully used to puzzle out the evolutionary origins of MIA metabolism and revealed a short-list of high confidence MIA biosynthetic genes for functional validation.

10.
Nat Prod Rep ; 38(12): 2145-2153, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33969366

RESUMEN

Microorganisms and plants represent major sources of natural compounds with a plethora of bioactive properties. Among these, plant natural products (PNPs) remain indispensable to human health. With few exceptions, PNP-based pharmaceuticals come from plant specialized metabolisms and display a structure far too complex for a profitable production by total chemical synthesis. Accordingly, their industrial processes of supply are still mostly based on the extraction of final products or precursors directly from plant materials. This implies that particular contexts (e.g. pandemics, climate changes) and natural resource overexploitation are main drivers for the high production cost and recurrent supply shortages. Recently, biotechnological manufacturing alternatives gave rise to a multitude of benchmark studies implementing the production of important PNPs in various heterologous hosts. Here, we spotlight unprecedented advancements in the field of metabolic engineering dedicated to the heterologous production of a prominent series of PNPs that were achieved during the year 2020. We also discuss how the knowledge accumulated in recent years could pave the way for a broader manufacturing palette of natural products from a wide range of natural resources.


Asunto(s)
Productos Biológicos/metabolismo , Ingeniería Metabólica/métodos , Plantas/metabolismo , Redes y Vías Metabólicas , Preparaciones de Plantas/metabolismo
11.
Front Cell Infect Microbiol ; 10: 587909, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194829

RESUMEN

Scedosporium species rank second among the filamentous fungi capable to colonize chronically the respiratory tract of patients with cystic fibrosis (CF). Nevertheless, there is little information on the mechanisms underpinning their virulence. Iron acquisition is critical for the growth and pathogenesis of many bacterial and fungal genera that chronically inhabit the CF lungs. In a previous study, we showed the presence in the genome of Scedosporium apiospermum of several genes relevant for iron uptake, notably SAPIO_CDS2806, an ortholog of sidD, which drives the synthesis of the extracellular hydroxamate-type siderophore fusarinine C (FsC) and its derivative triacetylfusarinine C (TAFC) in Aspergillus fumigatus. Here, we demonstrate that Scedosporium apiospermum sidD gene is required for production of an excreted siderophore, namely, Nα-methylcoprogen B, which also belongs to the hydroxamate family. Blockage of the synthesis of Nα-methylcoprogen B by disruption of the sidD gene resulted in the lack of fungal growth under iron limiting conditions. Still, growth of ΔsidD mutants could be restored by supplementation of the culture medium with a culture filtrate from the parent strain, but not from the mutants. Furthermore, the use of xenosiderophores as the sole source of iron revealed that S. apiospermum can acquire the iron using the hydroxamate siderophores ferrichrome or ferrioxamine, i.e., independently of Nα-methylcoprogen B production. Conversely, Nα-methylcoprogen B is mandatory for iron acquisition from pyoverdine, a mixed catecholate-hydroxamate siderophore. Finally, the deletion of sidD resulted in the loss of virulence in a murine model of scedosporiosis. Our findings demonstrate that S. apiospermum sidD gene drives the synthesis of a unique extracellular, hydroxamate-type iron chelator, which is essential for fungal growth and virulence. This compound scavenges iron from pyoverdine, which might explain why S. apiospermum and Pseudomonas aeruginosa are rarely found simultaneously in the CF lungs.


Asunto(s)
Infecciones Fúngicas Invasoras , Scedosporium , Animales , Humanos , Ratones , Scedosporium/genética , Sideróforos , Virulencia
12.
J Infect Public Health ; 13(1): 1-10, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31672427

RESUMEN

Globally, more than billion people suffer from fungal infections each year. The early diagnosis of aspergillosis is mandatory for successful treatment outcome. As careful testing takes time, epidemiological surveillance is crucial to guide individual patient therapy and to promote a high standard of health care. In this paper, we first present current trends in the epidemiology and antifungal susceptibility patterns of Aspergillus spp. in Middle Eastern and North African (MENA) countries in order to support infectious disease specialists and health workforces in this geographic area to treat adequately patients with aspergillosis. Then we discuss the existing literature data regarding the available diagnostic tools and antifungal resistance mechanisms of Aspergillus spp. Although a limited number of studies were reviewed here, the currently available data show that Aspergillus infections are not negligible in the MENA region, and that the emergence of antifungal resistance is a growing health issue, especially among immunocompromised patients.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergilosis/diagnóstico , Aspergilosis/epidemiología , Aspergillus/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple , África del Norte/epidemiología , Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus/clasificación , Humanos , Huésped Inmunocomprometido , Pruebas de Sensibilidad Microbiana , Medio Oriente/epidemiología
13.
Methods Mol Biol ; 1789: 33-54, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916070

RESUMEN

Accurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.


Asunto(s)
Proteínas Bacterianas/análisis , Catharanthus/citología , Proteínas Fluorescentes Verdes/análisis , Proteínas Luminiscentes/análisis , Cebollas/citología , Proteínas de Plantas/análisis , Vacuolas/ultraestructura , Proteínas Bacterianas/genética , Catharanthus/genética , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Microscopía Fluorescente/métodos , Cebollas/genética , Proteínas de Plantas/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Transformación Genética , Vacuolas/química , Vacuolas/genética
14.
Protoplasma ; 254(4): 1813-1818, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28120101

RESUMEN

Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.


Asunto(s)
Oxidorreductasas/genética , Proteínas de Plantas/genética , Rauwolfia/genética , Biolística , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Vectores Genéticos , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Rauwolfia/enzimología
15.
J Exp Bot ; 66(22): 7271-85, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26363642

RESUMEN

Phenolamides, so called hydroxycinnamic acid amides, are specialized metabolites produced in higher plants, involved in development, reproduction and serve as defence compounds in biotic interactions. Among them, trihydroxycinnamoyl spermidine derivatives were initially found to be synthetized by a spermidine hydroxycinnamoyltransferase (AtSHT) in Arabidopsis thaliana and to accumulate in the pollen coat. This study reports the identification, in Malus domestica, of an acyltransferase able to complement the sht mutant of Arabidopsis. The quantitative RT-PCR expression profile of MdSHT reveals a specific expression in flowers coordinated with anther development and tapetum cell activities. Three phenolamides including N (1),N (5),N (10)-tricoumaroyl spermidine and N (1),N (5)-dicoumaroyl-N (10)-caffeoyl spermidine identified by LC/MS, were shown to accumulate specifically in pollen grain coat of apple tree. Moreover, in vitro biochemical characterization confirmed MdSHT capacity to synthesize tri-substituted spermidine derivatives with a substrate specificity restricted to p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor. Further investigations of the presence of tri-substituted hydroxycinnamoyl spermidine conjugates in higher plants were performed by targeted metabolic analyses in pollens coupled with bioinformatic analyses of putative SHT orthologues in a wide range of available plant genomes. This work highlights a probable early evolutionary appearance in the common ancestral core Eudicotyledons of a novel enzyme from the BAHD acyltransferase superfamily, dedicated to the synthesis of trihydroxycinnamoyl spermidines in pollen coat. This pathway was maintained in most species; however, recent evolutionary divergences have appeared among Eudicotyledons, such as an organ reallocation of SHT gene expression in Fabales and a loss of SHT in Malvales and Cucurbitales.


Asunto(s)
Aciltransferasas/metabolismo , Evolución Biológica , Malus/enzimología , Polen/química , Espermidina/biosíntesis , Flores/crecimiento & desarrollo , Flores/metabolismo , Prueba de Complementación Genética , Magnoliopsida/química , Malus/química , Estructura Molecular , Mutación , Análisis de Secuencia de Proteína
16.
J Agric Food Chem ; 63(38): 8472-7, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26373576

RESUMEN

Grape canes are byproducts of viticulture containing valuable bioactive stilbenoids including monomers and oligomers of E-resveratrol. Although effective contents in stilbenoids are known to be highly variable, the determining factors influencing this composition remain poorly understood. As stilbenoids are locally induced defense compounds in response to phytopathogens, this study assessed the impact of downy mildew infection during the growing season on the stilbenoid composition of winter-harvested grape canes. The spatial distribution between pith, conducting tissues, and cortex of E-piceatannol, E-resveratrol, E-ε-viniferin, ampelopsin A, E-miyabenol C, Z/E-vitisin B, hopeaphenol, and isohopeaphenol in grape canes from infected vineyards was strongly altered. In conducting tissues, representing the main site of stilbenoid accumulation, E-ε-viniferin content was higher and E-resveratrol content was lower. These findings suppose that the health status in vineyards could modify the composition of stilbenoids in winter-harvested grape canes and subsequently the potential biological properties of the valuable extracts.


Asunto(s)
Enfermedades de las Plantas/microbiología , Extractos Vegetales/química , Estilbenos/química , Vitis/química , Extractos Vegetales/metabolismo , Estaciones del Año , Estilbenos/metabolismo , Vitis/metabolismo , Vitis/microbiología
17.
J Agric Food Chem ; 63(5): 1631-8, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25598452

RESUMEN

Grape canes are vineyard waste products containing valuable phytochemicals of medicine and agriculture interest. Grape canes storage is critical for the accumulation of these bioactive compounds. In the present study, we investigated the changes in stilbenoid phytochemical composition during grape cane storage and the influence of the temperature on final concentrations. A strong increase in the concentration of the monomer E-resveratrol (approximately 40-fold) was observed during the first 6 weeks of storage at 20 °C in eight different grape varieties without any change in oligomer concentrations. The E-resveratrol accumulation was temperature-dependent with an optimal range at 15-20 °C. A 2 h heat-shock treatment aiming at protein denaturation inhibited E-resveratrol accumulation. The constitutive expression of key genes involved in the stilbene precursor biosynthesis along with an induction of stilbene synthase (STS) expression during the first weeks of storage contribute to a de novo biosynthesis of E-resveratrol in pruned wood grapes.


Asunto(s)
Extractos Vegetales/biosíntesis , Tallos de la Planta/química , Estilbenos/metabolismo , Vitis/metabolismo , Residuos/análisis , Aciltransferasas/genética , Aciltransferasas/metabolismo , Extractos Vegetales/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo , Resveratrol , Estilbenos/análisis , Temperatura , Vitis/química , Vitis/enzimología , Vitis/genética
18.
Phytochemistry ; 113: 9-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25146650

RESUMEN

The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Catharanthus/genética , Genómica , Alcaloides de Triptamina Secologanina/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/farmacología , Catharanthus/química , Madagascar , Estructura Molecular , Fitoquímicos/genética , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/farmacología , Transcriptoma/genética , Vinblastina/metabolismo , Alcaloides de la Vinca/metabolismo
19.
Mol Biol Rep ; 39(3): 3235-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21706164

RESUMEN

The enzyme geranylgeranyl diphosphate synthase (GGPS: EC 2.5.1.1, EC 2.5.1.10, EC 2.5.1.29) catalyses the formation of geranylgeranyl diphosphate (GGPP) from isopentenyl diphosphate and dimethylallyl diphosphate via three successive condensation reactions. A full-length nucleotide sequence of GGPS (named CrGGPS) was cloned from the medicinal plant Catharanthus roseus. The deduced polypeptide has 383 amino acids with a calculated mass of 41.6 kDa and possesses prenyltransferase signatures characteristic of plant type II GGPS. The enzyme was characterized by functional complementation in carotenoid accumulating strains of Escherichia coli. When cultures of Catharanthus cell lines were treated with methyljasmonate, no specific increase in transcript levels were observed. In plants, GGPS are encoded by a small multigene family and the isoforms have been shown to be localized in three different subcellular compartments: chloroplast, endoplasmic reticulum and mitochondria. We investigated the subcellular distribution of CrGGPS through transient transformations of C. roseus cells with a yellow fluorescent protein-fused construct. Our results clearly indicate that CrGGPS is located to plastids within stroma and stromules.


Asunto(s)
Catharanthus/enzimología , Farnesiltransferasa/genética , Acetatos , Secuencia de Aminoácidos , Proteínas Bacterianas , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , Ciclopentanos , Cartilla de ADN/genética , ADN Complementario/biosíntesis , Escherichia coli , Farnesiltransferasa/metabolismo , Prueba de Complementación Genética , Espacio Intracelular/metabolismo , Proteínas Luminiscentes , Microscopía Fluorescente , Datos de Secuencia Molecular , Oxilipinas , Plastidios/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
20.
Planta Med ; 71(6): 572-4, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15971133

RESUMEN

The Madagascar periwinkle Catharanthus roseus accumulates a number of terpenoid indole alkaloids, some of which have high therapeutic interest. The biotechnological approach with cells in vitro remains an alternative to the field culture of periwinkle for the production of such compounds. We previously reported that two phytohormones, cytokinin and ethylene, remarkably enhanced the accumulation of alkaloids in periwinkle cell suspensions. In this work, we investigated the effects of these hormones on the regulation of several genes of the indole alkaloid biosynthetic pathway. We show that cytokinin and/or ethylene greatly enhanced the expression of the geraniol 10-hydroxylase gene. When given together, these hormones also increased the expression of three genes belonging to the methyl-erythritol pathway. These results make it possible to consider elements of cytokinin and ethylene signalling pathways as tools for improving terpenoid indole alkaloid production through metabolic engineering.


Asunto(s)
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Fitoterapia , Terpenos/metabolismo , Catharanthus/enzimología , Catharanthus/genética , Técnicas de Cultivo , Citocininas , Etilenos , Regulación de la Expresión Génica de las Plantas , Humanos , Alcaloides Indólicos/química , Raíces de Plantas , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Terpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA