Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(21): 11373-11393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36576222

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are potent insulin sensitizers in treating type 2 diabetes. Despite being very effective in the fight against diabetes-mediated complications, PPARγ agonists are accompanied by severe side effects leading to complicated health problems, making the discovery of novel safe ligands highly pertinent. A significant intense research effort is in progress to explore the PPARγ activating potential of a wide range of natural compounds. Lemon (Citrus limon) contains various bioactive flavonoids, and eriocitrin is the major flavonoid. It possesses substantial antioxidant and anticancer, lipid-lowering activities and prevents obesity-associated metabolic diseases. Eriocitrin is metabolized to eriodictyol in the intestine, and the absorbed eriodictyol undergoes conversion to numerous metabolites in vivo. It is unclear if eriocitrin or its metabolites are responsible for their beneficial effects. We have used molecular docking, ADMET properties, drug-likeness score and molecular dynamics simulation study to find if eriocitrin and its metabolites are potent binders for PPARγ. Docking studies revealed that eriocitrin binds to PPARγ with the highest binding energy, but ADMET properties and in vivo studies show that the bioavailability of eriocitrin is very poor. Molecular dynamics studies were carried out to validate the docking results, and multiple parameters like RMSD, RMSF, Radius of gyration, SASA, hydrogen bond analysis, interaction energy, principal component analysis, Gibbs free energy and MM-PBSA were calculated. Based on our studies, eriodictyol, eriodictyol 7-O-glucuronide, eriodictyol 3'-O-glucuronide, homoeriodictyol and homoeriodictyol 7-O-glucuronide which are metabolites of eriocitrin appear to be potent partial agonists of PPARγ under physiological conditions.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Citrus , Diabetes Mellitus Tipo 2 , Humanos , PPAR gamma/agonistas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Glucurónidos , Flavonoides/farmacología , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA