Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 278: 114238, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34048878

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Vernicia fordii (Hemsl.) Airy Shaw (V. fordii) is also known as the tung tree and its leaves and fruit are used as an oriental treatment for dyspepsia, edema, and skin diseases, which are known as diabetic complications. AIM OF THE STUDY: In this study, we aimed to investigate the methanolic extract (VF5) of the leaves of V. fordii as an insulin secretagogue and its probable mechanism and verify the effect in HFD-fed mice. MATERIALS AND METHODS: The insulin secretagogue activity of different doses of VF5 (0.1, 0.3 and 1.0 µg/ml) was assessed using in vitro insulin secretion assay and confirmed the anti-diabetic effect in mice fed HFD for 4 weeks with different doses of VF5 (10, 20 and 50 mg/kg oral) for another 6 weeks. Glbenclamide (30 mg/kg, oral) was used as positive control drug. The possible mechanisms were evaluated by using Gö6983 (10 µM), U73122 (10 µM) and nifedipine (10 µM). The major constituents of VF5 were analyzed by UPLC-QToF-MS and 1H and 13C NMR spectroscopy. RESULTS: UPLC-QToF-MS and NMR spectroscopy analysis indicated that one of the main active components of VF5 was tigliane-diterpene esters. VF5 functioned as an insulin secretagogue and enhanced mitochondria respiration and insulin homeostasis. We confirmed that VF5 preserved the ß-cell and reduced the ß-cell expansion which caused by metabolic stress under HFD. The antidiabetic role of VF5 in HFD fed mice was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT), fasting plasma insulin level, fasting blood glucose level, AKT signal in peripheral tissue in the absence of toxic effects. Mechanistically, insulinotropic effect of VF5 was mediated by activation of PKCα via intracellular Ca2+ influx and enhanced mitochondria function. CONCLUSION: VF5 exhibits potent insulin secretagogue function and improves insulin sensitivity and protection of pancreatic ß-cells from metabolic stress without toxicity. Taken together, our study suggests that VF5 could be potentially used for treating diabetes and metabolic diseases through improving ß-cell function.


Asunto(s)
Aleurites/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Secreción de Insulina/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Diabetes Mellitus Experimental/fisiopatología , Relación Dosis-Respuesta a Droga , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/administración & dosificación , Extractos Vegetales/efectos adversos , Estrés Fisiológico/efectos de los fármacos
2.
J Med Food ; 23(12): 1312-1322, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33202166

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disease with a complex underlying mechanism that has not been completely understood. Thus, effective and safe drugs for this disease are not yet available. Artemisia annua L. is a medicinal plant with potent antimicrobial and antioxidant activities. In this study, we prepared a water extract of A. annua (WEAA) and examined its potential for NAFLD treatment. First, we pretreated HepG2 cells (human hepatocarcinoma cell line) with WEAA and then treated the cells with oleic acid or tert-butylhydroperoxide to examine the effect of WEAA on the lipid accumulation and the cytotoxicity, respectively. WEAA not only inhibited lipid accumulation within HepG2 cells but also protected cells from oxidative stress-mediated damage through the activation of antioxidant enzymes (such as activation of superoxide dismutase and production of glutathione) and its own scavenging activity. Next, to confirm protective effect of the WEAA in in vivo, mice were intragastrically administered with WEAA, extract of Silybum marianum or water once a day, and simultaneously provided with high-fat diet to induce fatty liver and hepatic steatosis. Oral administration of WEAA ameliorated weight gain and hepatic lipid accumulation in high-fat diet-fed mice. Moreover, the plasma levels of triglyceride, aspartate aminotransferase, and alanine aminotransferase were reduced in the WEAA-treated group. Our findings indicated that WEAA may be a potential intervention for preventing or treating hepatic lipid accumulation and liver damage.


Asunto(s)
Artemisia annua/química , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Dieta Alta en Grasa , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
3.
Integr Biol (Camb) ; 7(10): 1318-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25953078

RESUMEN

When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signalling intermediates with poorly defined relationships to such a physiological endpoint. Using cellular force as the target, here we report a new screening technology and demonstrate its applications using human airway smooth muscle cells in the context of asthma and Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Asma/tratamiento farmacológico , Asma/fisiopatología , Fenómenos Biomecánicos , Células Cultivadas , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Análisis de Fourier , Glaucoma/tratamiento farmacológico , Glaucoma/fisiopatología , Humanos , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Contracción Muscular/efectos de los fármacos
4.
Plant Cell Rep ; 29(11): 1297-304, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20820784

RESUMEN

Plants express many calmodulins (CaMs) and calmodulin-like (CML) proteins that sense and transduce different Ca(2+) signals. Previously, we reported divergent soybean (Glycine max) CaM isoforms (GmCaM4/5) with differential abilities to activate CaM-dependent enzymes. To elucidate biological functions of divergent CaM proteins, we isolated a cDNA encoding a CML protein, AtCML8, from Arabidopsis. AtCML8 shows highest identity with GmCaM4 at the protein sequence level. Expression of AtCML8 was high in roots, leaves, and flowers but low in stems. In addition, the expression of AtCML8 was induced by exposure to salicylic acid or NaCl. AtCML8 showed typical characteristics of CaM such as Ca(2+)-dependent electrophoretic mobility shift and Ca(2+) binding ability. In immunoblot analyses, AtCML8 was recognized only by antiserum against GmCaM4 but not by GmCaM1 antibodies. Interestingly, AtCML8 was able to activate phosphodiesterase (PDE) but did not activate NAD kinase. These results suggest that AtCML8 acts as a CML protein in Arabidopsis with characteristics similar to soybean divergent GmCaM4 at the biochemical levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Calmodulina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calmodulina/genética , ADN Complementario/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Salicílico/farmacología , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología
5.
Proc Natl Acad Sci U S A ; 106(36): 15495-500, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19706428

RESUMEN

Ca(2+)-dependent inactivation (CDI) is a key regulator and hallmark of the Ca(2+) release-activated Ca(2+) (CRAC) channel, a prototypic store-operated Ca(2+) channel. Although the roles of the endoplasmic reticulum Ca(2+) sensor STIM1 and the channel subunit Orai1 in CRAC channel activation are becoming well understood, the molecular basis of CDI remains unclear. Recently, we defined a minimal CRAC activation domain (CAD; residues 342-448) that binds directly to Orai1 to activate the channel. Surprisingly, CAD-induced CRAC currents lack fast inactivation, revealing a critical role for STIM1 in this gating process. Through truncations of full-length STIM1, we identified a short domain (residues 470-491) C-terminal to CAD that is required for CDI. This domain contains a cluster of 7 acidic amino acids between residues 475 and 483. Neutralization of aspartate or glutamate pairs in this region either reduced or enhanced CDI, whereas the combined neutralization of six acidic residues eliminated inactivation entirely. Based on bioinformatics predictions of a calmodulin (CaM) binding site on Orai1, we also investigated a role for CaM in CDI. We identified a membrane-proximal N-terminal domain of Orai1 (residues 68-91) that binds CaM in a Ca(2+)-dependent manner and mutations that eliminate CaM binding abrogate CDI. These studies identify novel structural elements of STIM1 and Orai1 that are required for CDI and support a model in which CaM acts in concert with STIM1 and the N terminus of Orai1 to evoke rapid CRAC channel inactivation.


Asunto(s)
Canales de Calcio/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Línea Celular , Biología Computacional , Cartilla de ADN/genética , ADN Complementario/genética , Electrofisiología , Humanos , Immunoblotting , Inmunoprecipitación , Modelos Biológicos , Mutagénesis , Proteína ORAI1 , Plásmidos/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Molécula de Interacción Estromal 1 , Transfección
6.
J Biol Chem ; 280(5): 3697-706, 2005 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-15569682

RESUMEN

Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates diverse cellular functions by modulating the activity of a variety of enzymes and proteins. Plants express numerous CaM isoforms that exhibit differential activation and/or inhibition of CaM-dependent enzymes in vitro. However, the specific biological functions of plant CaM are not well known. In this study, we isolated a cDNA encoding a CaM binding transcription factor, MYB2, that regulates the expression of salt- and dehydration-responsive genes in Arabidopsis. This was achieved using a salt-inducible CaM isoform (GmCaM4) as a probe from a salt-treated Arabidopsis expression library. Using domain mapping, we identified a Ca2+-dependent CaM binding domain in MYB2. The specific binding of CaM to CaM binding domain was confirmed by site-directed mutagenesis, a gel mobility shift assay, split ubiquitin assay, and a competition assay using a Ca2+/CaM-dependent enzyme. Interestingly, the specific CaM isoform GmCaM4 enhances the DNA binding activity of AtMYB2, whereas this was inhibited by a closely related CaM isoform (GmCaM1). Overexpression of Gm-CaM4 in Arabidopsis up-regulates the transcription rate of AtMYB2-regulated genes, including the proline-synthesizing enzyme P5CS1 (Delta1-pyrroline-5-carboxylate synthetase-1), which confers salt tolerance by facilitating proline accumulation. Therefore, we suggest that a specific CaM isoform mediates salt-induced Ca2+ signaling through the activation of an MYB transcriptional activator, thereby resulting in salt tolerance in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Sales (Química)/metabolismo , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Señalización del Calcio/fisiología , Calmodulina/química , ADN Complementario , Regulación de la Expresión Génica de las Plantas/fisiología , Isomerismo , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente , Prolina/metabolismo , Transactivadores/genética , Ubiquitina , Levaduras
7.
J Biol Chem ; 279(2): 848-58, 2004 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-14570888

RESUMEN

Reversible phosphorylation is a key mechanism for the control of intercellular events in eukaryotic cells. In animal cells, Ca2+/CaM-dependent protein phosphorylation and dephosphorylation are implicated in the regulation of a number of cellular processes. However, little is known on the functions of Ca2+/CaM-dependent protein kinases and phosphatases in Ca2+ signaling in plants. From an Arabidopsis expression library, we isolated cDNA encoding a dual specificity protein phosphatase 1, which is capable of hydrolyzing both phosphoserine/threonine and phosphotyrosine residues of the substrates. Using a gel overlay assay, we identified two Ca2+-dependent CaM binding domains (CaMBDI in the N terminus and CaMBDII in the C terminus). Specific binding of CaM to two CaMBD was confirmed by site-directed mutagenesis, a gel mobility shift assay, and a competition assay using a Ca2+/CaM-dependent enzyme. At increasing concentrations of CaM, the biochemical activity of dual specificity protein phosphatase 1 on the p-nitrophenyl phosphate (pNPP) substrate was increased, whereas activity on the phosphotyrosine of myelin basic protein (MBP) was inhibited. Our results collectively indicate that calmodulin differentially regulates the activity of protein phosphatase, dependent on the substrate. Based on these findings, we propose that the Ca2+ signaling pathway is mediated by CaM cross-talks with a protein phosphorylation signal pathway in plants via protein dephosphorylation.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/química , Calmodulina/metabolismo , Proteínas Tirosina Fosfatasas/biosíntesis , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Compuestos de Anilina/química , Arabidopsis , Sitios de Unión , Unión Competitiva , Western Blotting , Calcio/química , Calcio/metabolismo , Calmodulina/química , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Fosfatasas de Especificidad Dual , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Glutatión Transferasa/metabolismo , Cinética , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Compuestos Organofosforados/química , Péptidos/química , Hidrolasas Diéster Fosfóricas/metabolismo , Fosforilación , Fosfotirosina/química , Unión Proteica , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
8.
J Biol Chem ; 277(22): 19304-14, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-11904292

RESUMEN

Transient influx of Ca(2+) constitutes an early event in the signaling cascades that trigger plant defense responses. However, the downstream components of defense-associated Ca(2+) signaling are largely unknown. Because Ca(2+) signals are mediated by Ca(2+)-binding proteins, including calmodulin (CaM), identification and characterization of CaM-binding proteins elicited by pathogens should provide insights into the mechanism by which Ca(2+) regulates defense responses. In this study, we isolated a gene encoding rice Mlo (Oryza sativa Mlo; OsMlo) using a protein-protein interaction-based screening of a cDNA expression library constructed from pathogen-elicited rice suspension cells. OsMlo has a molecular mass of 62 kDa and shares 65% sequence identity and scaffold topology with barley Mlo, a heptahelical transmembrane protein known to function as a negative regulator of broad spectrum disease resistance and leaf cell death. By using gel overlay assays, we showed that OsMlo produced in Escherichia coli binds to soybean CaM isoform-1 (SCaM-1) in a Ca(2+)-dependent manner. We located a 20-amino acid CaM-binding domain (CaMBD) in the OsMlo C-terminal cytoplasmic tail that is necessary and sufficient for Ca(2+)-dependent CaM complex formation. Specific binding of the conserved CaMBD to CaM was corroborated by site-directed mutagenesis, a gel mobility shift assay, and a competition assay with a Ca(2+)/CaM-dependent enzyme. Expression of OsMlo was strongly induced by a fungal pathogen and by plant defense signaling molecules. We propose that binding of Ca(2+)-loaded CaM to the C-terminal tail may be a common feature of Mlo proteins.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Unión Competitiva , Northern Blotting , Southern Blotting , Calmodulina/química , Membrana Celular/metabolismo , Clonación Molecular , Citoplasma/metabolismo , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Biblioteca de Genes , Genes de Plantas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/química , Hidrolasas Diéster Fosfóricas/metabolismo , Filogenia , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Fracciones Subcelulares/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA