Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543864

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral infection causing acute and severe vesicular lesions in cattle and pigs, which has prompted global vaccination policies. This study presents a technique for enhancing antigen yield in SAT1 BOT and SAT3 ZIM by treatment with calcium chloride (CaCl2). We tested changes in cell viability in BHK-21 suspension cells treated with varying concentrations of CaCl2. The optimal CaCl2 concentration was determined based on antigen yield. The timing of CaCl2 supplementation relative to FMD virus inoculation was tested. Finally, the optimal medium for antigen production was identified. We observed a concentration-dependent decrease in BHK-21 cell viability at >7.5 mM CaCl2. A CaCl2 concentration of 3 mM yielded the most antigens. CaCl2 supplementation relative to FMD virus infection was optimal 2 h before or with viral inoculation. CD-BHK 21 medium supplemented with CaCl2 was the most productive medium. Specifically, SAT1 BOT and SAT3 ZIM showed improved antigen production in CD-BHK 21 medium with 3 mM CaCl2, while Provero-1 and Cellvento BHK-200 media showed no significant enhancement. Overall, CaCl2 supplementation enhanced FMD antigen productivity. This study provides a useful framework for enhancing antigen production efficiently in the FMD vaccine industry.

2.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510965

RESUMEN

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Inosina Pranobex , Vacunas Virales , Animales , Ratones , Porcinos , Adyuvantes de Vacunas , Anticuerpos Antivirales , Adyuvantes Inmunológicos , Interleucinas , Inmunidad
3.
Vaccines (Basel) ; 11(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38006022

RESUMEN

An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNß, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.

4.
Virus Res ; 335: 199189, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37536380

RESUMEN

Foot-and-mouth disease (FMD) is a rapidly propagating infectious disease of cloven-hoofed animals, especially cattle and pigs, affecting the productivity and profitability of the livestock industry. Presently, FMD is controlled and prevented using vaccines; however, conventional FMD vaccines have several disadvantages, including short vaccine efficacy, low antibody titers, and safety issues in pigs, indicating the need for further studies. Here, we evaluated the efficacy of a novel bivalent vaccine containing zinc sulfate as an immunostimulant and FMD type O and A antigens (O PA2 and A YC, respectively) against FMD virus in mice and pigs. Zinc sulfate induced cellular immunity in murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs) by increasing IFNγ secretion. Additionally, FMD vaccine containing O PA2 and A YC antigens and zinc sulfate induced early, mid-, and long-term immune responses in mice and pigs, and enhanced cellular and humoral immunity by regulating the expression of pathogen recognition receptors (PRRs), transcription factors, co-stimulatory molecules, and cytokines in porcine PBMCs from vaccinated pigs. Overall, these results indicated that the novel immunostimulant zinc sulfate induced potent cellular and humoral immune responses by stimulating antigen-presenting cells (APCs) and T and B cells, and enhanced long-term immunity by promoting the expression of co-stimulatory molecules. These outcomes suggest that zinc sulfate could be used as a novel vaccine immunostimulant for difficult-to-control viral diseases, such as African swine fever (ASF) or COVID-19.


Asunto(s)
Fiebre Porcina Africana , COVID-19 , Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Ratones , Animales , Porcinos , Bovinos , Inmunidad Humoral , Sulfato de Zinc , Leucocitos Mononucleares , Anticuerpos Antivirales , Adyuvantes Inmunológicos
5.
J Vet Sci ; 19(6): 788-797, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30304889

RESUMEN

In many countries, vaccines are used for the prevention of foot-and-mouth disease (FMD). However, because there is no protection against FMD immediately after vaccination, research and development on antiviral agents is being conducted to induce protection until immunological competence is produced. This study tested whether well-known chemicals used as RNA virus treatment agents had inhibitory effects on FMD viruses (FMDVs) and demonstrated that ribavirin showed antiviral effects against FMDV in vitro/in vivo. In addition, it was observed that combining the administration of the antiviral agents orally and complementary therapy with vaccines synergistically enhanced antiviral activity and preserved the survival rate and body weight in the experimental animals. Antiviral agents mixed with an adjuvant were inoculated intramuscularly along with the vaccines, thereby inhibiting virus replication after injection and verifying that it was possible to induce early protection against viral infection prior to immunity being achieved through the vaccine. Finally, pigs treated with antiviral agents and vaccines showed no clinical signs and had low virus excretion. Based on these results, it is expected that this combined approach could be a therapeutic and preventive treatment for early protection against FMD.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Fiebre Aftosa , Fiebre Aftosa/prevención & control , Ribavirina/uso terapéutico , Vacunas Virales/uso terapéutico , Animales , Antivirales/administración & dosificación , Línea Celular , Sinergismo Farmacológico , Fiebre Aftosa/tratamiento farmacológico , Inyecciones Intramusculares , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos C57BL , Ribavirina/administración & dosificación , Porcinos , Porcinos Enanos , Vacunas Virales/administración & dosificación
6.
Immunol Invest ; 44(1): 101-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25058651

RESUMEN

Since the outbreaks of foot-and-mouth disease (FMD) in South Korea in 2010-2011, a trivalent vaccine has been used as a routine vaccination. Despite the high efficacy of the trivalent vaccine, low antibody formation was reported in the pig industry and there is considerable concern about the ability of the vaccine to protect against the Andong strain responsible for recent outbreaks in South Korea. To overcome these problems, immunostimulators have been widely used to improve vaccine efficacy in South Korea, although without any scientific evidence. Based on the current situation, the aim of this study was to investigate the effects of germanium biotite, a feed supplement used to enhance the immune system, on the immune responses to FMD vaccination through the Andong strain challenge experiment in trivalent vaccinated pigs. Following the challenge, the germanium biotite-fed pigs showed high levels of IL-8 in serum, and increased cellular immune responses to stimulation with the Andong strain antigen compared to nonsupplemented pigs. In addition, higher FMD virus (FMDV) neutralizing antibody titers were detected in the germanium biotite-fed group than in the nonsupplemented group before the challenge. The findings of this study indicate that germanium biotite supplement might enhance immune responses to the FMD vaccine in pigs.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Silicatos de Aluminio/administración & dosificación , Anticuerpos Antivirales/sangre , Compuestos Ferrosos/administración & dosificación , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Germanio/administración & dosificación , Vacunas Virales/administración & dosificación , Inmunidad Adaptativa/efectos de los fármacos , Silicatos de Aluminio/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/biosíntesis , Antígenos Virales/administración & dosificación , Suplementos Dietéticos , Compuestos Ferrosos/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Germanio/inmunología , Interleucina-8/sangre , República de Corea , Porcinos , Vacunación , Vacunas Virales/inmunología
7.
BMC Vet Res ; 10: 179, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25255918

RESUMEN

BACKGROUND: After the recent outbreak of foot-and-mouth disease (FMD) in Korea, a vaccination policy has been applied to control the disease. In addition, several non-specific immune stimulators have been used without any scientific evidence that they would enhance the immune response after FMD vaccination and/or protect against FMD. Based on the current situation, the aim of this study was to evaluate the effect of the non-specific immune stimulator germanium biotite on FMD vaccination and immune responses in cattle. To achieve our goal, immune responses to FMD vaccination, such as levels of IgG and IgA, antibody duration, and virus-neutralizing titers were investigated after germanium biotite feeding. The PBMC typing and proliferative response after stimulation with mitogens, the cytokines expression level of PBMC, and the lysozyme activity in the serum were measured to evaluate the immune enhancing effects of germanium biotite following its administration. RESULTS: Following the first vaccination, high level of IgG (at 4 weeks) and IgA (at 2 and 31 weeks) titers in serum and saliva were observed in the germanium biotite-feeding group (p < 0.05). The germanium biotite group also showed high and longstanding inhibition percentage value in ELISA assay at 31 weeks (p < 0.05). Generally, higher virus-neutralizing antibody titers were observed in the feeding group at 20 and 31 weeks after vaccination. Following the feeding germanium biotite, the germanium biotite group showed increased subpopulation of CD4+ lymphocytes and MHC I+II+ cells in PBMCs at 23 week, responding to stimulation of ConA. The levels of IFN-γ (at 3 and 8 weeks), IL-1α (at 3, 11, and 23 weeks), IL-1ß (at 3, 8, and 11 weeks), and IL-4 (at 8 and 11 weeks) gene expression were also significantly increased in the feeding group (p < 0.01 and p < 0.05). Feeding with germanium biotite increased the lymphocytes' proliferative response to the stimulation of ConA and LPS at 23 weeks and lysozyme activity at 9 weeks after feeding. CONCLUSIONS: These results suggest that germanium biotite feeding could increase the protection against FMD virus infection via the induction of higher humoral and cellular immune responses in cattle.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Suplementos Dietéticos , Fiebre Aftosa/prevención & control , Germanio/uso terapéutico , Vacunas Virales/inmunología , Alimentación Animal/análisis , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/inmunología , Citocinas/genética , Citocinas/metabolismo , Fiebre Aftosa/epidemiología , Regulación de la Expresión Génica/fisiología , Germanio/administración & dosificación , República de Corea/epidemiología , Vacunación/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA