Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Med Rep ; 25(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34935054

RESUMEN

Calystegia soldanella is a halophyte and a perennial herb that grows on coastal sand dunes worldwide. Extracts from this plant have been previously revealed to have a variety of bioactive properties in humans. However, their effects on colorectal cancer cells remain poorly understood. In the present study, the potential biological activity of C. soldanella extracts in the colorectal cancer cell line HT­29 was examined. First, five solvent fractions [n­hexane, dichloromethane (DCM), ethyl acetate, n­butanol and water] were obtained from the crude extracts of C. soldanella through an organic solvent extraction method. In particular, the DCM fraction was demonstrated to exert marked dose­ and time­dependent inhibitory effects according to results from the cell viability assay. Data obtained from the apoptosis assay suggested that the inhibition of HT­29 cell viability induced by DCM treatment was attributed to increased apoptosis. The apoptotic rate was markedly increased in a dose­dependent manner, which was associated with the protein expression levels of apoptosis­related proteins, including increased Fas, Bad and Bax, and decreased pro­caspase­8, Bcl­2, Bcl­xL, pro­caspase­9, pro­caspase­7 and pro­caspase­3. A mitochondrial membrane potential assay demonstrated that more cells became depolarized and the extent of cytochrome c release was markedly increased in a dose­dependent manner in HT­29 cells treated with DCM. In addition, cell cycle analysis confirmed S­phase arrest following DCM fraction treatment, which was associated with decreased protein expression levels of cell cycle­related proteins, such as cyclin A, CDK2, cell division cycle 25 A and cyclin dependent kinase inhibitor 1. Based on these results, the present study suggested that the DCM fraction of the C. soldanella extract can inhibit HT­29 cell viability whilst inducing apoptosis through mitochondrial membrane potential regulation and S­phase arrest. These results also suggested that the DCM fraction has potential anticancer activity in HT­29 colorectal cells. Further research on the composition of the DCM fraction is warranted.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Calystegia/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Células HT29 , Humanos , Cloruro de Metileno/química
2.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188055

RESUMEN

Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.


Asunto(s)
Tolerancia a Medicamentos/genética , Genoma Bacteriano , Hierro/metabolismo , Panax/microbiología , Sphingomonas/genética , Sphingomonas/fisiología , ADN Bacteriano , Genes Bacterianos/genética , Tamaño del Genoma , Hidroxibenzoatos , Hierro/toxicidad , Metales Pesados , Desarrollo de la Planta , Raíces de Plantas/microbiología , Microbiología del Suelo , Sphingomonas/efectos de los fármacos , Sphingomonas/aislamiento & purificación , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA