Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255858

RESUMEN

Cirsium japonicum is a medicinal plant that has been used due to its beneficial properties. However, extensive information regarding its therapeutic potential is scarce in the scientific literature. The antioxidant and anti-inflammatory potential of polyphenols derived from the Cirsium japonicum extracts (CJE) was systematically analyzed. High-performance liquid chromatography (HPLC) with mass spectrometry (MS) was used to examine the compounds in CJE. A total of six peaks of polyphenol compounds were identified in the extract, and their MS data were also confirmed. These bioactive compounds were subjected to ultrafiltration with LC analysis to assess their potential for targeting cyclooxygenase-2 (COX2) and DPPH. The outcomes showed which primary compounds had the highest affinity for binding both COX2 and DPPH. This suggests that components that showed excellent binding ability to DPPH and COX2 can be considered significant active substances. Additionally, in vitro analysis of CJE was carried out in macrophage cells after inducing inflammation with lipopolysaccharide (LPS). As a result, it downregulated the expression of two critical pro-inflammatory cytokines, COX2 and inducible nitric oxide synthase (iNOS). In addition, we found a solid binding ability through the molecular docking analysis of the selected compounds with inflammatory mediators. In conclusion, we identified polyphenolic compounds in CJE extract and confirmed their potential antioxidant and anti-inflammatory effects. These results may provide primary data for the application of CJE in the food and pharmaceutical industries with further analysis.


Asunto(s)
Antioxidantes , Cirsium , Antioxidantes/farmacología , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Polifenoles/farmacología , Extractos Vegetales/farmacología
2.
Sci Rep ; 13(1): 20883, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016995

RESUMEN

The phenolic compounds in Lonicera japonica & Chenpi distillation extract (LCDE) were thoroughly examined for their antioxidant and anti-inflammatory properties. Phenolic compounds in LCDE were analyzed for five peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS) and determined. Five phenolic compounds were identified from the samples and MS data. Ultrafiltration with LC analysis was used to investigate the ability of bioactive compounds to target DPPH. As a result, it was confirmed that the major compounds exhibited a high binding affinity to DPPH and could be regarded as antioxidant-active compounds. In addition, the anti-inflammatory effect of LCDE was confirmed in vitro, and signal inhibition of anti-inflammation cytokines, MAPK and NF-kB pathways was confirmed. Finally, Molecular docking analysis supplements the anti-inflammatory effect through the binding affinity of selected compounds and inflammatory factors. In conclusion, the phenolic compounds of the LCDE were identified and potential active compounds for antioxidant and anti-inflammatory activities were identified. Additionally, this study will be utilized to provide basic information for the application of LCDE in the pharmaceutical and pharmaceutical cosmetics industries along with information on efficient screening techniques for other medicinal plants.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Antioxidantes/farmacología , Antioxidantes/química , Lonicera/química , Simulación del Acoplamiento Molecular , Fenoles/análisis , Queratinocitos , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
Animals (Basel) ; 13(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37370536

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious animal disease that occurs in cloven-hoofed animals including pigs. To prevent FMD, vaccines and adjuvants are routinely used to induce an immune response; however, it requires an extended period of time to produce sufficient antibodies to prevent viral infection. In this study, we evaluated the increased effectiveness of the FMD vaccine structural protein (SP) antibody by administrating the Amino-Zn adjuvant to 100 pigs from 3 test pig farms in their feed. The FMD vaccine antibody titer and immunological index were analyzed using an enzyme-linked immunosorbent assay (ELISA) kit, and the hematological and blood biochemical parameters were analyzed using an automatic blood analyzer. The titer of the FMD vaccine SP antibodies in the 0.2% Amino-Zn-administered group was significantly increased compared to that of the positive control group only injected with FMD vaccine at 4 weeks after the first vaccination and at 4, 8, and 16 weeks after the second vaccination (p < 0.05). The FMD vaccine SP antibody positive rate was 100% until shipment. The IFN-γ and IgA levels were significantly increased by Amino-Zn administration 4 weeks after the first vaccination and 4 weeks after the second vaccination (p < 0.05). On the other hand, serum AST, and CPK (p < 0.001) were significantly decreased by Amino-Zn administration. These results show that the administration of Amino-Zn is effective in enhancing the antibody titer and immunogenicity of the FMD vaccine and can be used as an oral adjuvant (OrAd) to prevent viral diseases, such as FMD.

4.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677905

RESUMEN

Periodontitis is caused by pathogens in the oral cavity. It is a chronic infectious disease that causes symptoms including gingival bleeding and tooth loss resulting from the destruction of periodontal tissues coupled with inflammation. Dendropanax morbiferus H.Lév (DM) is a natural product that exhibits various biological activities with few side effects. In this study, the potential of DM leaf hot-water extracts (DMWE) as a treatment for periodontitis was determined and its anti-oxidant and anti-inflammatory effects were evaluated. Compounds in DMWE were identified by high-performance liquid chromatography (HPLC) and nitric oxide (NO) and prostaglandin E2 (PGE2) production was measured in RAW 264.7 cells. We measured the gingival index and gingival sulcus depth, and micro-CT was performed in vivo using a ligature-induced periodontitis rat model, which is similar to human periodontitis. The DMWE-treated group exhibited a decrease in cytokine concentration and relieved the gingival index and gingival sulcus depth compared with the periodontitis-induced control group. In addition, micro-CT and histological analysis revealed that DMWE exhibited anti-inflammatory effects and improved alveolar bone loss in periodontitis-induced rats. These findings suggest that DMWE has excellent anti-oxidant and anti-inflammatory effects that protect and prevent periodontal tissue damage and tooth loss caused by the inflammatory response.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Pérdida de Diente , Ratas , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Pérdida de Diente/complicaciones , Pérdida de Diente/tratamiento farmacológico , Modelos Animales de Enfermedad , Periodontitis/patología , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
5.
Molecules ; 26(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500860

RESUMEN

Artemisia anomala S. Moore is a perennial herbaceous plant classified as Asteraceae of the genus Artemisia. Many species of Artemisia have been used as medicinal materials. Artemisia anomala S. Moore has been widely used in China to treat inflammatory diseases. However, the mechanism of its action on the keratinocyte inflammatory response is poorly understood. Here, we investigated the anti-inflammatory reaction of Artemisia anomala S. Moore ethanol extract (EAA) using human keratinocyte (HaCaT) cells, which involved investigating the nuclear factor kappa B (NF-κB), signal transducer, and activator of transcription-1 (STAT-1), as well as mitogen-activated protein kinase (MAPK) signaling pathways and atopic dermatitis-like skin lesions in mice. We elucidated the anti-inflammatory effects of EAA on tumor necrosis factor-α/interferon-γ (TNF-α/IFN-γ)-treated human keratinocyte cells and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like mice. The levels of chemokines and cytokines (IL-8, IL-6, TARC, and RANTES) were determined by an enzyme-linked immunosorbent assay. The NF-κB, STAT-1, and MAPK signaling pathways in HaCaT cells were analyzed by western blotting. Thickening of the mice dorsal and ear skin was measured and inflammatory cell infiltration was observed by hematoxylin and eosin staining. Results showed that EAA suppressed IL-8, IL-6, TARC, and RANTES production. EAA inhibited nuclear translocation of NFκB and STAT-1, as well as reduced the levels of phosphorylated ERK MAPKs. EAA improved AD-like skin lesions in DNCB-treated mice. These findings suggest that EAA possesses stronger anti-inflammatory properties and can be useful as a functional food or candidate agent for AD.


Asunto(s)
Antiinflamatorios/química , Artemisia/química , Dermatitis Atópica/metabolismo , Dinitroclorobenceno/química , Mediadores de Inflamación/química , Extractos Vegetales/química , Animales , Antiinflamatorios/farmacología , Quimiocinas/metabolismo , Citocinas/metabolismo , Dinitroclorobenceno/metabolismo , Modelos Animales de Enfermedad , Células HaCaT , Humanos , Mediadores de Inflamación/farmacología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Extractos Vegetales/metabolismo , Factor de Transcripción STAT1 , Transducción de Señal , Piel , Factor de Necrosis Tumoral alfa/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-34335806

RESUMEN

Dendropanax morbifera is a well-known traditional medicine used in China and Korea to treat intestinal disorders, urosis, diuresis, and chronic glomerulonephritis. Hyperuricemia is a metabolic disorder characterized by a high uric acid level in serum due to an imbalance between uric acid production and excretion and causes gout. Recently, the prevalence of hyperuricemia worldwide has been continuously increasing. Xanthine oxidase (XOD) inhibitors (allopurinol (ALP) and febuxostat) and uricosuric agents (benzbromarone and probenecid) are used to treat hyperuricemia clinically. However, because these drugs are poorly tolerated and cause side effects, such as kidney diseases, hepatotoxicity, gastrointestinal symptoms, and hypersensitivity syndrome, only a limited number of drugs are available. We investigated the antihyperuricemic effects of Dendropanax morbifera leaf ethanol extract (DMLE) and its underlying mechanisms of action through in vitro and in vivo studies. We evaluated uric acid levels in serum and urine, and xanthine oxidase (XOD) inhibition activity in the serum and liver tissue of a hyperuricemic rat model of potassium oxonate (PO)-induced hyperuricemic rats. In vitro study, XOD-inhibitory activity was the lowest among the test substances at the IC50 of ALP. However, the IC50 of DMLE-70 was significantly low compared with that of other DMLEs (p < 0.05). In PO-induced hyperuricemic rats, uric acid (UA) levels in serum and urine were significantly reduced in all DMLE-70 and allopurinol-treated (ALT) groups than in the PC group (p < 0.05). UA levels in urine were lower than those in serum in all DME groups. In PO-induced hyperuricemic rats, DMEE-200 reduced UA concentration in serum and increased UA excretion in the urine. These findings suggest that DMLE exerts antihyperuricemic and uricosuric effects on promoting UA excretion by enhanced secretion and inhibition of UA reabsorption in the kidneys. Thus, DMLE may be a potential treatment for hyperuricemia and gout.

7.
Biomolecules ; 10(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178308

RESUMEN

Rheum undulatum and Glycyrrhiza uralensis have been used as supplementary ingredients in various herbal medicines. They have been reported to have anti-inflammatory and antioxidant effects and, therefore, have potential in the treatment and prevention of various liver diseases. Considering that hepatic encephalopathy (HE) is often associated with chronic liver failure, we investigated whether an R. undulatum and G. uralensis extract mixture (RG) could reduce HE. We applied systems-based pharmacological tools to identify the active ingredients in RG and the pharmacological targets of RG by examining mechanism-of-action profiles. A CCl4-induced HE mouse model was used to investigate the therapeutic mechanisms of RG on HE. We successfully identified seven bioactive ingredients in RG with 40 potential targets. Based on an integrated target-disease network, RG was predicted to be effective in treating neurological diseases. In animal models, RG consistently relieved HE symptoms by protecting blood-brain barrier permeability via downregulation of matrix metalloproteinase-9 (MMP-9) and upregulation of claudin-5. In addition, RG inhibited mRNA expression levels of both interleukin (IL)-1ß and transforming growth factor (TGF)-ß1. Based on our results, RG is expected to function various biochemical processes involving neuroinflammation, suggesting that RG may be considered a therapeutic agent for treating not only chronic liver disease but also HE.


Asunto(s)
Fabaceae/química , Encefalopatía Hepática/tratamiento farmacológico , Fallo Hepático/tratamiento farmacológico , Extractos Vegetales/farmacología , Rheum/química , Animales , Modelos Animales de Enfermedad , Encefalopatía Hepática/etiología , Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/patología , Fallo Hepático/complicaciones , Fallo Hepático/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/química
8.
Mediators Inflamm ; 2019: 5914396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31686984

RESUMEN

This study is aimed at determining whether Sesamum indicum Linn. beneficially influences FcεRI-mediated allergic reactions in RBL-2H3 mast cells; it is also aimed at further investigating Lyn/Fyn and Syk signaling pathways. To examine the antiallergic effect of Sesamum indicum Linn. extract (SIE), we treated antigen/immunoglobulin E- (IgE-) sensitized mast cells with extracts of various concentrations. We examined the degranulation release and concentrations of inflammatory mediators. Additionally, the expressions of genes involved in the FcεRI and arachidonate signaling pathways were examined. SIE inhibited the degranulation and secretion of inflammatory mediators in antigen/IgE-sensitized mast cells. SIE reduced the expressions of FcεRI signaling-related genes, such as Syk, Lyn, and Fyn, and the phosphorylation of extracellular signal-regulated kinase in antigen/IgE-sensitized mast cells. Additionally, in late allergic responses, SIE reduced PGD2 release and COX-2 and cPLA2 phosphorylation expression in FcεRI-mediated mast cell activation. Lastly, 250-500 mg/kg SIE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. The potent effect of SIE on RBL-2H3 mast cell activation indicates that the extract could potentially be used as a novel inhibitor against allergic reactions.


Asunto(s)
Hipersensibilidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Sesamum/química , Animales , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Etanol , Hipersensibilidad/metabolismo , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Ratas , Transducción de Señal/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-31687037

RESUMEN

Rhus verniciflua is widely known for its antioxidant, antibacterial, anticancer, and antiaging efficacy and α-glucosidase inhibition. This study was designed whether Rhus verniciflua extracts inhibit the IgE-antigen-mediated allergic reaction in RBL-2H3 mast cells, and it further investigated the FcεRI- and arachidonate-signaling by which Rhus verniciflua extracts exert its antiallergic effects. IgE-antigen-sensitized RBL-2H3 mast cells were investigated for the cytotoxicity of Rhus verniciflua extracts and ß-hexosaminidase release, and inflammatory mediators (e.g., TNF-α, IL-4, IL-6, histamine, and PGD2) were then assessed. Additionally, we examined expressions of genes involved in arachidonate- and FcεRI-signaling pathway in RBL-2H3. Rhus verniciflua extracts inhibited ß-hexosaminidase release and production of the inflammatory mediators in RBL-2H3. Rhus verniciflua extracts reduced amounts of histamine and expressions of FcεRI signaling-related genes such as Lyn and Syk and phosphorylation of extracellular signal-regulated kinase in mast cells. Finally, in late allergic responses, Rhus verniciflua extracts reduced PGD2 release and COX-2 and cPLA2 phosphorylation expressions from IgE-antigen-mediated mast cells. Lastly, 250-500 mg/kg RVE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergy properties of Rhus verniciflua extracts in FcɛRI-mediated allergic reaction.

10.
BMC Complement Altern Med ; 19(1): 274, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638961

RESUMEN

BACKGROUND: Recent research has suggested that autophagy can provide a better mechanism for inducing cell death than current therapeutic strategies. This study investigated the effects of using an ethanol extract of Chrysanthemum zawadskii Herbich (ECZ) to induce apoptosis and autophagy associated with reliable signal pathways in mouse colon cancer CT-26 cells. METHODS: Using ECZ on mouse colon cancer CT-26 cells, cell viability, annexin V/propidium iodide staining, acridine orange staining, reactive oxygen species (ROS) and western blotting were assayed. RESULTS: ECZ exhibited cytotoxicity in CT-26 cells in a dose-dependent manner. ECZ induced apoptosis was confirmed by caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and increased production of reactive oxygen species (ROS). Furthermore, it was shown that ECZ induced autophagy via the increased conversion of microtubule-associated protein 1 light chain 3II, the degradation of p62, and the formation of acidic vesicular organelles. The inhibition of ROS production by N-Acetyl-L-cysteine resulted in reduced ECZ-induced apoptosis and autophagy. Furthermore, the inhibition of autophagy by 3-methyladenine resulted in enhanced ECZ-induced apoptosis via increased ROS generation. CONCLUSION: These findings confirmed that ECZ induced ROS-mediated autophagy and apoptosis in colon cancer cells. Therefore, ECZ may serve as a novel potential chemotherapeutic candidate for colon cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Chrysanthemum/química , Neoplasias del Colon/fisiopatología , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Extractos Vegetales/aislamiento & purificación , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo
11.
Phytomedicine ; 62: 152780, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31121384

RESUMEN

BACKGROUND: Recent reports highlighted the possibility that Yes-associated protein (YAP) and transforming growth factor-ß1 (TGF-ß1) can act as critical regulators of hepatic stellate cells (HSCs) activation; therefore, it is natural for compounds targeting Hippo/YAP and TGF-ß1/Smad signaling pathways to be identified as potential anti-fibrotic candidates. PURPOSE: Liquiritigenin (LQ) is an aglycone of liquiritin and has been reported to protect the liver from injury. However, its effects on the Hippo/YAP and TGF-ß1/Smad pathways have not been identified to date. METHODS: We conducted a series of experiments using CCl4-induced fibrotic mice and cultured LX-2 cells. RESULT: LQ significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin (α-SMA) staining in mice. Moreover, LQ blocked the TGF-ß1-induced phosphorylation of Smad 3, and the transcript levels of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase-2 (MMP-2) in LX-2 cells, which is similar with resveratrol and oxyresveratrol (positive controls). Furthermore, LQ increased activation of large tumor suppressor kinase 1 (LATS1) with the induction of YAP phosphorylation, thereby preventing YAP transcriptional activity and suppressing the expression of exacerbated TGF-ß1/Smad signaling molecules. CONCLUSION: These results clearly show that LQ ameliorated experimental liver fibrosis by acting on the TGF-ß1/Smad and Hippo/YAP pathways, indicating that LQ has the potential for effective treatment of liver fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Flavanonas/farmacología , Cirrosis Hepática/prevención & control , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Smad/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Línea Celular , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Vía de Señalización Hippo , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Señalizadoras YAP
12.
Artículo en Inglés | MEDLINE | ID: mdl-30719065

RESUMEN

Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.

13.
Phytomedicine ; 55: 14-22, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668424

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic diseases such as obesity and insulin resistance. PURPOSE: We studied whether an ethanol extract of Lycopus lucidus Turcz. ex Benth (LLE) exhibited effects on lipid metabolism in NAFLD. STUDY DESIGN: An in vitro modelwas established by treatment of HepG2 cells with a 1 mM free fatty acid (FFA) mixture (oleic acid/palmitic acid, 2:1). C57BL/6 mice were fed a high-fat diet (HFD; 60 kcal% fat) for 14 weeks to induce obesity and were treated with or without LLE (100 or 200  mg/kg daily by oral gavage). METHODS: HepG2 cells were exposed to 1 mM FFA, with or without LLE (250 - 1000  mg/ml). Intracellular lipid contents were measured by Oil Red O staining and a Nile Red assay. The body weight, relative liver weight, hepatic lipids, triglycerides (TGs), and total cholesterol (TC) were measured in the mice. Serum alanine aminotransferase (ALT), TG, TC, glucose, insulin, leptin, and tumor necrosis factor-alpha (TNF-α) levels were determined by biochemical or enzyme-linked immunosorbent assays. Histologic analysis was performed in the liver. Western blotting and quantitative real-time polymerase chain reaction were used to analyze the expression of key enzymes of hepatic lipid metabolism. RESULTS: LLE significantly decreased the intracellular lipid accumulation in FFA-treated HepG2 cells. LLE not only remarkably decreased the expression of lipogenesis genes but also increased ß-oxidation in FFA-induced HepG2 cells. In the in vivo study, LLE treatment significantly decreased the body weight, relative liver weight, serum ALT, TC, and low-density lipoprotein cholesterol, as well as the serum glucose, insulin, leptin, and TNF-α levels in HFD-fed mice. The hepatic TG and TC contents were significantly reduced in the LLE-treated groups. Western blot analysis showed that the expression of sterol-regulatory element-binding protein 1 decreased, while that of phosphorylated AMP-activated protein kinase and peroxisome proliferator-activated receptor α increased in the LLE-treated mice. CONCLUSION: These results suggest that LLE may exert protective effects against NAFLD-related obesity and metabolic disease.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Lycopus/química , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Ácidos Grasos no Esterificados/efectos adversos , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Extractos Vegetales/química , Triglicéridos/sangre
14.
Phytomedicine ; 55: 229-237, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668433

RESUMEN

BACKGROUND: The anti-inflammatory actions of Polygonum cuspidatum, Angelica gigas, Sophora flavescens and Arctium fruit are well known. Nonetheless, effects of herbal combination (PASA) or its fermentation by microorganisms (F-PASA) on the allergic response remain unknown. PURPOSE: We investigated whether PASA or F-PASA could inhibit IgE/antigen complex (IgE/Ag)-mediated allergic responses. METHODS: To evaluate and compare anti-allergic actions of PASA and F-PASA, we performed cell viability, ß-hexosaminidase activity, ELISA assays for cytokines and eicosanoids, immunoblot analysis, HPLC analysis and passive cutaneous anaphylaxis (PCA) models. RESULTS: F-PASA had stronger anti-degranulation actions (IC50, 510.9  µg/ml) than PASA (IC50, 1,261  µg/ml) without cytotoxicity until 2000  µg/ml in IgE/Ag-activated RBL-2H3 cells. Additionally, F-PASA inhibited formation of tumor necrosis factor-α (IC50, 147.4  µg/ml), interleukin-4 (IC50, 213.4  µg/ml), prostaglandin D2 (IC50, 42.40  µg/ml) and leukotriene C4 (IC50, 157.9  µg/ml). Moreover, F-PASA dose-dependently inhibited the phosphorylation and expression of proteins that are related to the FcεRI and arachidonate cascades. Consistent with in vitro studies, F-PASA from 25 to 100  mg/kg also suppressed IgE/Ag-induced PCA reaction more than PASA did in mice. In phytochemical analysis, using PASA and F-PASA, F-PASA showed a higher level of emodin-8-O-ß-d-glucoside, whereas the level of arctiin, an artigenin glycoside, was reduced compared with that using PASA. CONCLUSION: These findings indicate that F-PASA, including both artigenin and emodin-8-O-ß-d-glucoside, possesses stronger anti-allergic properties. Therefore, F-PASA may be useful as a functional food or as a phytomedicine for allergic diseases.


Asunto(s)
Antialérgicos/farmacología , Antialérgicos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Hipersensibilidad/tratamiento farmacológico , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Angelica/química , Animales , Arctium/química , Fallopia japonica/química , Fermentación , Masculino , Ratones , Sophora/química
15.
Am J Chin Med ; 47(1): 203-221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30612453

RESUMEN

Viscum coloratum has been used as a component for traditional medicine for therapy of inflammatory diseases. Nonetheless, effect of Viscum coloratum on inflammatory bowel disease is unknown. Therefore, we investigated whether the ethanol extract of Viscum coloratum (VCE) could suppress inflammatory responses in dextran sodium sulfate (DSS)-treated mice and mast cell-derived inflammatory mediator (MDIM)-activated Caco-2 cells. VCE significantly attenuated body weight loss, shortened colon length, enteric epithelium disruption, enterorrhagia and colonic edema in DSS-treated mice. Additionally, VCE decreased the levels of immunoglobulin E, interleukin-6 and tumor necrosis factor- α in serum and the activity of myeloperoxidase in colonic tissue. Moreover, VCE inhibited the infiltration of immune cells as well as the activity and expression of both matrix metalloprotease-2 and matrix metalloprotease-9. Furthermore, VCE restored zonula occludens-1 expression. Consistent with in vivo studies, VCE suppressed the activity and expression of matrix metalloprotease-2 and matrix metalloprotease-9 in MDIM-activated Caco-2 cells. In addition, VCE reinstated the expression of zonula occludens-1 through inhibiting activation of janus kinase 2/signal transducer and activator of transcription 3 in the cells. In conclusion, VCE exerts anticolitic action through inhibiting the activation of mast cells. Therefore, VCE may be useful as a phytomedicine or functional food for inflammatory bowel disease.


Asunto(s)
Colitis/tratamiento farmacológico , Mastocitos/metabolismo , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Viscum/química , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/efectos adversos , Humanos , Inmunoglobulina E/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
16.
J Immunol Res ; 2018: 5718396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30402509

RESUMEN

Ulcerative colitis is one inflammatory bowel disease (IBD) and is caused by diverse factors, including the extent and duration of intestinal inflammation. We investigated the effect of Acer palmatum thumb. ethanol extract (KIOM-2015E) on the expression of tight junction proteins and the levels of inflammation in the cell model induced with interleukin-6- (IL-6-) and mouse model of dextran sodium sulfate (DSS) induced with acute colitis. KIOM-2015E (100 mg/kg) was orally administered once per day to BALB/C mice with colitis induced by administration of 5% DSS in drinking water. KIOM-2015E did not affect viability in Caco-2 cells. Also, KIOM-2015E repaired the IL-6-induced intestinal barrier dysfunction in Caco-2 cells. Furthermore, KIOM-2015E recovered the loss of body weight and the abnormally short colon lengths in the DSS-induced model of acute colitis. Moreover, KIOM-2015E significantly inhibited the decrease of zonula occluden-1 and occludin in colonic tissue relative to the DSS-treated control group. KIOM-2015E also significantly inhibited the expression of IL-6 and tumor necrosis factor-α in the level of serum relative to the control group. Collectively, these data suggest that KIOM-2015E protects colitis principally by improving intestinal barrier function and promoting anti-inflammatory responses. In turn, these effects inhibit macrophage infiltration into the colon and thus may be a candidate treatment for IBD.


Asunto(s)
Colitis/tratamiento farmacológico , Colon/metabolismo , Células Epiteliales/fisiología , Inflamación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Uniones Estrechas/metabolismo , Acer/inmunología , Animales , Células CACO-2 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colitis/inducido químicamente , Colitis Ulcerosa , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Etanol/química , Humanos , Inflamación/inducido químicamente , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Extractos Vegetales/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-30105080

RESUMEN

Lycopus lucidus Turcz. ex Benth (LT) has been broadly used as a traditional medicinal herb in Asia including Korea, China, and Japan due to its noted ability to promote blood circulation and remove blood stasis. However, its anticancer mechanism is not understood. This study aims to elucidate the effects of ethanol extracts of LT (ELT) relative to the role of Runt-related transcription factor- (Runx-) 2 in the invasive and metastatic potentials of mouse colon cancer to determine the underlying mechanisms involved. ELT was evaluated for the antimetastasis activity using CT-26 colon cancer using wound healing, transwell matrigel, and western blot analysis. We used Runx-2-specific siRNA to further determine the relationship between Runx-2 and matrix metalloprotease- (MMP-) 9 in the migration and invasion of CT-26 cells. Runx-2 was first demonstrated to be a transcription factor that plays a remarkable role in diverse biological processes of chondrocytes and osteoblasts, but recently, Runx-2 has been reported to be associated with the progression of certain human cancers. ELT was not altered in its effects on growth inhibition. However, ELT significantly inhibited wound closure and cell invasion in a dose-dependent manner. ELT decreased the metastasis by regulating the activity of MMP-9 and Runx-2 at the translational levels. Our results demonstrate that ELT decreases metastasis by inhibiting the Runx-2-MMP-9 axis. We suggest that it can be used as a novel agent in therapeutic strategies for combating colon cancer.

18.
Chem Biol Interact ; 294: 151-157, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30148990

RESUMEN

Deoxypodophyllotoxin (DPT) is a naturally occurring flavolignan in Anthriscus sylvestris known as cow parsley or wild chervil, and has been reported to have inhibitory effects against several pathological processes including cancer, inflammation and infection. Here, we report the effects of DPT in the fatty liver induced by high fat diet in vivo as well as its regulatory mechanism related with the transcription factor for lipogenic genes such as sterol regulatory element binding protein-1c (SREBP-1c) in vitro. C57BL/6 mice were fed high fat diet for 10 weeks and also orally administrated with DPT for additional 4 weeks. 5 and 10 mg/kg of DPT decreased lipid accumulation in the liver induced by high fat diet, as indicated by histological parameters such as Oil Red O staining and hematoxylin & eosin as well as the contents of hepatic triglyceride and cholesterol. In hepatocytes, DPT inhibited the liver X receptor α-mediated SREBP-1c induction and expression of the lipogenic genes, including fatty acid synthase, acetyl-CoA carboxylase and stearoyl-CoA desaturase-1. Moreover, DPT induced AMP-activated protein kinase (AMPK) activation, which has been known to inhibit the expression of SREBP-1c in hepatocyte. Also this compound restored the dysregulation of AMPK and SREBP-1c induced by high fat diet in mice. In conclusion, we demonstrated that DPT significantly inhibited fatty liver by adjusting lipid metabolism coordinated with AMPK activation and SREBP-1c inhibition.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apiaceae/metabolismo , Hígado/efectos de los fármacos , Podofilotoxina/análogos & derivados , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Colesterol/metabolismo , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Células Hep G2 , Humanos , Hidrocarburos Fluorados/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Podofilotoxina/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Sulfonamidas/farmacología , Triglicéridos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
19.
Nutrients ; 10(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932162

RESUMEN

Artemisia apiacea Hance is a traditional herbal medicine used for treating eczema and jaundice in Eastern Asia including China, Korea, and Japan. However, the biological and pharmacological actions of Artemisia apiacea Hance in atopic dermatitis (AD) are not fully understood. An ethanolic extract of Artemisia apiacea Hance (EAH) was tested in vitro and in vivo to investigate its anti-inflammatory activity and anti-atopic dermatitis effects. The results showed that EAH dose-dependence inhibited production of regulated on activation, normal T-cell expressed and secreted (RANTES), interleukin (IL)-6, IL-8, and thymus and activation-regulated chemokine (TARC). EAH inhibited the activation of p38, extracellular signal-regulated kinases (ERK), and STAT-1 and suppressed the degradation of inhibited both nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκB-α) in TNF-α/IFN-γ⁻stimulated HaCaT cells. EAH also suppressed the translocation of inflammation transcription factors such as NF-κB p65 in TNF-α/IFN-γ⁻stimulated HaCaT cells. In addition, EAH reduced 2,4-dinitrochlorobenzene (DNCB)-induced ear thickness and dorsal skin thickness in a dose-dependent manner. EAH appeared to regulate chemokine formation by inhibiting activation of and ERK as well as the NK-κB pathways. Furthermore, EAH significantly improved the skin p38 conditions in a DNCB-induced AD-like mouse model.


Asunto(s)
Artemisia/química , Quimiocinas/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Interferón gamma/metabolismo , Extractos Vegetales/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Interferón gamma/antagonistas & inhibidores , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Transcripción STAT1/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
20.
J Ethnopharmacol ; 222: 61-70, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29689351

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. AIM OF THE STUDY: The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. MATERIALS AND METHODS: The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. RESULTS: During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. CONCLUSIONS: GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition.


Asunto(s)
Adipogénesis/efectos de los fármacos , Gleditsia , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/fisiología , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ciclo Celular/efectos de los fármacos , Frutas/química , Ratones , Mitosis/efectos de los fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/análisis , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA