Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570815

RESUMEN

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Asunto(s)
Diabetes Mellitus , Enfermedades de los Perros , Microbioma Gastrointestinal , Enfermedades Metabólicas , Morus , Humanos , Animales , Perros , 1-Desoxinojirimicina/farmacología , Extractos Vegetales/farmacología , Obesidad/tratamiento farmacológico , Obesidad/veterinaria , Diabetes Mellitus/veterinaria , Enfermedades Metabólicas/veterinaria , Hojas de la Planta
2.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499541

RESUMEN

Overweight and obesity, associated with various health complications, refer to abnormal or excessive fat accumulation conditions that harm health. Like humans, obesity is a growing problem in dogs, which may increase the risk of serious diseases such as diabetes and cancer. Mulberry leaf has shown potential anti-obesity and anti-diabetes effects in several studies. Our research studied the impact of mulberry leaf supplements in healthy old overweight dogs for 12 weeks. Blood and fecal samples were collected from the dogs before and after treatment for different analyses, including whole transcriptome and gut microbiome analysis. The Body Condition Score (BCS) and blood glucose levels were significantly decreased in all mulberry treatment groups, which justifies the anti-obesity effect of mulberry leaf in dogs. Throughout the whole transcriptome study, the downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1 genes in the high mulberry group were found, which have been associated with anti-inflammatory effects in the literature. It may be an essential gene expression mechanism responsible for the anti-inflammatory and, subsequently, anti-obesity effects associated with mulberry leaf treatment, as confirmed by real-time polymerase chain reaction analysis. In microbiome analysis, Papillibacter cinnamivorans, related to the Mediterranean diet, which may cause anti-inflammatory effects, were abundant in the same treatment group. Further studies may be required to establish the gene expression mechanism and role of abundant bacteria in the anti-obesity effect of mulberry supplements in dogs. Overall, we propose mulberry leaves as a portion of food supplements for improving blood glucose levels and the anti-inflammation of blood in companion dogs.


Asunto(s)
Diabetes Mellitus , Morus , Humanos , Perros , Animales , Anciano , Glucemia , Hojas de la Planta/metabolismo , Obesidad/metabolismo , Sobrepeso/complicaciones , Suplementos Dietéticos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
Sci Rep ; 11(1): 16334, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381138

RESUMEN

Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.


Asunto(s)
Productos Biológicos/farmacología , Bombyx/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Sobrepeso/tratamiento farmacológico , Panax/química , Transcriptoma/efectos de los fármacos , Animales , Dieta Alta en Grasa/métodos , Suplementos Dietéticos , Perros , Femenino , Masculino , Sobrepeso/inducido químicamente
4.
Curr Issues Mol Biol ; 43(1)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925122

RESUMEN

Edible insects, Bombyx mori (silkworm; SW), which feed on mulberry leaves, have been consumed by humans for a long time as supplements or traditional medication. Non-alcoholic fatty liver disease (NAFLD) is a liver metabolic disorder that affects many people worldwide. We examined the hepatoprotective effects of SW using in vitro and high-fat and high-fructose (HFHF) diet-induced obese in vivo model mice by real-time PCR, immunoblot analysis, and fecal microbiota analysis. SW significantly reduced lipid accumulation and expression of the lipogenic genes in HepG2 cells and the livers of HFHF-induced mice. SW caused significant reductions in triglycerides, and total cholesterol in serum and upregulation of fatty acid oxidation markers compared to the HFHF group. Besides, SW significantly induced phosphorylation of AMPK and ACC in both models, suggesting roles in AMPK activation and the ACC signaling pathway. Furthermore, the gut microbiota analysis demonstrated that SW treatment reduced Firmicutes to Bacteroidetes ratios and the relative abundance of the Lachnospiraceae family compared to HFHF-induced obese mice. These results provide a novel therapeutic agent of hepatoprotective effects of SW for non-alcoholic hepatic steatosis that targets hepatic AMPK and ACC-mediated lipid metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Productos Biológicos/farmacología , Bombyx/química , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Línea Celular , Dieta Alta en Grasa , Células Hep G2 , Humanos , Técnicas In Vitro , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
5.
Nutrients ; 12(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580414

RESUMEN

Neferine, an alkaloid component extracted from lotus seed embryos, is known for its anti-inflammatory, anticancer, and antioxidant properties. However, the anti-adipogenic activity of neferine has not been thoroughly investigated. In this study, neferine was found to inhibit lipid accumulation in a dose-dependent manner during the differentiation of 3T3-L1 cells without inducing cytotoxicity. Real-time polymerase chain reaction and immunoblot analysis revealed the downregulation in the expression of peroxisome proliferator activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP-1c), and fatty acid synthase (FAS) and the upregulation in carnitine palmitoyltransferase-1 (CPT-1) and sirtuin 1 (SIRT1) levels following neferine treatment. Furthermore, neferine increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which is an important regulator of fatty acid oxidation. Our result indicates that neferine attenuates adipogenesis and promotes lipid metabolism by activating AMPK-mediated signaling. Therefore, neferine may serve as a therapeutic candidate for obesity treatment.


Asunto(s)
Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Adipogénesis/efectos de los fármacos , Bencilisoquinolinas/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipogénesis/genética , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Carnitina O-Palmitoiltransferasa/genética , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos , Ácido Graso Sintasas/genética , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , PPAR gamma/genética , Transducción de Señal/efectos de los fármacos , Sirtuina 1/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Regulación hacia Arriba/efectos de los fármacos
6.
Nutrients ; 11(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726767

RESUMEN

In this study, we investigated the effects of black ginseng (BG) and ginsenoside Rb1, which induced browning effects in 3T3-L1 and primary white adipocytes (PWATs) isolated from C57BL/6 mice. BG and Rb1 suppressed the expressions of CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding transcription factor-1c (SREBP-1c), whereas the expression level of peroxisome proliferator-activated receptor gamma (PPARγ) was increased. Furthermore, BG and Rb1 enhanced the protein expressions of the brown-adipocyte-specific markers PR domain containing 16 (PRDM16), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and uncoupling protein 1 (UCP1). These results were further supported by immunofluorescence images of mitochondrial biogenesis. In addition, BG and Rb1 induced expressions of brown-adipocyte-specific marker proteins by AMP-activated protein kinase (AMPK) activation. BG and Rb1 exert antiobesity effects by inducing browning in 3T3-L1 cells and PWATs through AMPK-mediated pathway activation. We suggest that BG and Rb1 act as potential functional antiobesity food agents.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Adipocitos Blancos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Ginsenósidos/farmacología , Panax , Extractos Vegetales/farmacología , Proteína Desacopladora 1/metabolismo , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Biogénesis de Organelos , PPAR gamma/metabolismo , Panax/química , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Extractos Vegetales/aislamiento & purificación , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
7.
Nutrients ; 11(3)2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813654

RESUMEN

Honeyberry (Lonicera caerulea) has been used for medicinal purposes for thousands of years. Its predominant anthocyanin, cyanidin-3-O-glucoside (C3G), possesses antioxidant and many other potent biological activities. We aimed to investigate the effects of honeyberry extract (HBE) supplementation on HepG2 cellular steatosis induced by free fatty acids (FFA) and in diet-induced obese mice. HepG2 cells were incubated with 1 mM FFA to induce lipid accumulation with or without HBE. Obesity in mice was induced by a 45% high fat diet (HFD) for 6 weeks and subsequent supplementation of 0.5% HBE (LH) and 1% HBE (MH) for 6 weeks. HBE suppressed fatty acid synthesis and ameliorated lipid accumulation in HepG2 cells induced by FFA. Moreover, HBE also decreased lipid accumulation in the liver in the supplemented HBE group (LH, 0.5% or MH, 1%) compared with the control group. The expressions of adipogenic genes involved in hepatic lipid metabolism of sterol regulatory element-binding protein-1 (SREBP-1c), CCAAT/enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid synthase (FAS) were decreased both in the HepG2 cells and in the livers of HBE-supplemented mice. In addition, HBE increased mRNA and protein levels of carnitine palmitoyltransferase (CPT-1) and peroxisome proliferator-activated receptor α (PPARα), which are involved in fatty acid oxidation. Furthermore, HBE treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and Acetyl CoA Carboxylase (ACC). Honeyberry effectively reduced triglyceride accumulation through down-regulation of hepatic lipid metabolic gene expression and up-regulation of the activation of AMPK and ACC signaling in both the HepG2 cells as well as in livers of diet-induced obese mice. These results suggest that HBE may actively ameliorate non-alcoholic fatty liver disease.


Asunto(s)
Caprifoliaceae/química , Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Supervivencia Celular , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Fitoterapia , Extractos Vegetales/química
8.
Plant Physiol ; 139(4): 1881-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16299179

RESUMEN

Nodules are formed on legume roots as a result of signaling between symbiotic partners and in response to the activities of numerous genes. We cloned fragments of differentially expressed genes in spot-inoculated soybean (Glycine max) roots. Many of the induced clones were similar to known genes related to oxidative stress, such as thioredoxin and beta-carotene hydroxylase. The deduced amino acid sequences of full-length soybean cDNAs for thioredoxin and beta-carotene hydroxylase were similar to those in other species. In situ RNA hybridization revealed that the thioredoxin gene is expressed on the pericycle of 2-d-old nodules and in the infected cells of mature nodules, suggesting that thioredoxin is involved in nodule development. The thioredoxin promoter was found to contain a sequence resembling an antioxidant responsive element. When a thioredoxin mutant of yeast was transformed with the soybean thioredoxin gene it became hydrogen peroxide tolerant. These observations prompted us to measure reactive oxygen species levels. These were decreased by 3- to 5-fold in 7-d-old and 27-d-old nodules, coincident with increases in the expression of thioredoxin and beta-carotene hydroxylase genes. Hydrogen peroxide-producing regions identified with cerium chloride were found in uninoculated roots and 2-d-old nodules, but not in 7-d-old and 27-d-old nodules. RNA interference-mediated repression of the thioredoxin gene severely impaired nodule development. These data indicate that antioxidants such as thioredoxin are essential to lower reactive oxygen species levels during nodule development.


Asunto(s)
Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Proteínas de Plantas/biosíntesis , Tiorredoxinas/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Genes de Plantas , Peróxido de Hidrógeno/farmacología , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Glycine max/genética , Simbiosis , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA