Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760105

RESUMEN

The present study aimed to determine the anticancer effect of the herbal mixture extract C5E in the pancreatic cancer cell line, PANC­1, in the absence or presence of gemcitabine treatment, a chemotherapeutic drug used for the treatment of pancreatic cancer. The anticancer effects of C5E, gemcitabine and C5E plus gemcitabine in PANC­1 cells following 72 h of treatment were investigated. The effect of each treatment on cell cycle arrest, apoptosis and the proportion of side population (SP) cells was determined using flow cytometric analysis following propidium iodide (PI), Annexin V­FITC/PI double staining and Hoechst 33342 staining, respectively. SP cells share similar characteristics to cancer stem­like cells, and a reduction in the SP is considered to be indicative of an anticancer effect. The percentage of SP cells and the cell viability of general PANC­1 cells were significantly decreased in response to all treatments. The percentage of SP cells was reduced from 8.2% (control) to 3.9, 7.2 and 5.1% following the treatment with C5E, gemcitabine and the co­treatment, respectively. All three treatments were discovered to inhibit cell viability by arresting the cell cycle at the S phase and promoted cell death by inducing early apoptosis, with the levels of apoptosis being increased from 1.9% (control) to 7.3, 2.5 and 12.0% following the treatment with C5E, gemcitabine and the co­treatment, respectively. The mRNA expression levels of sonic hedgehog, which is implicated in the development of certain types of cancer, were downregulated to a greater extent following the co­treatment with C5E and gemcitabine compared with the treatment with either C5E or gemcitabine alone. As the co­treatment with gemcitabine and C5E was more effective than each individual treatment, the present study suggested that the combined treatment may exhibit synergistic effects in PANC­1 cells.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Anexina A5/genética , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Fluoresceína-5-Isotiocianato/análogos & derivados , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Medicina de Hierbas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Extractos Vegetales/química , Gemcitabina
2.
Sci Rep ; 10(1): 16112, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999298

RESUMEN

Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient's quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.


Asunto(s)
NADPH Oxidasa 4/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Calidad de Vida , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo , Neumonitis por Radiación/tratamiento farmacológico , Neumonitis por Radiación/metabolismo
3.
Oncol Rep ; 36(5): 2875-2883, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27599899

RESUMEN

A recent study showned that complementary medicine is gradually gaining wide acceptance. In the present study, the herbal mixture extract (H3) composed of 3 oriental herbal plants was investigated for anticancer activity in vitro and in vivo. H3 inhibited PANC1 cell growth by promoting G0/G1 arrest (11% increase) and apoptotic cell death (9% increase). H3 also suppressed stem cell-like side population cells (4% decrease) and migration activity (24% decrease). In contrast, gemcitabine decreased side population cells and migration activity by 3 and 11%, respectively. These effects of H3 and gemcitabine were further studied by examining the expression of apoptosis-associated genes (CXCR4, JAK2 and XIAP) and stem cell-associated genes (ABCG2, POU5F1 and SOX2). We also found that H3 suppressed tumor growth by 46% in a PANC1­xenograft model, while gemcitabine caused a 36% decrease. The antitumor effects of H3 were confirmed by western blot analysis for COX-2 and cytochrome c expression. Furthermore, necrotic cell death and erythrocyte-containing cavities were detected in tumor tissue by hematoxylin and eosin (H&E) staining. Notably, the combinatorial therapy (H3 and gemcitabine) increased tumor growth compared to that in the control. In conclusion, the present study shows that H3 has promise as a therapeutic agent against pancreatic cancer and its cancer stem cells.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Medicina de Hierbas , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Adenocarcinoma/genética , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Janus Quinasa 2/biosíntesis , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Extractos Vegetales/química , Receptores CXCR4/biosíntesis , Proteína Inhibidora de la Apoptosis Ligada a X/biosíntesis , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA