Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Stroke ; 19(1): 84-93, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37489815

RESUMEN

BACKGROUND: Valproate is a candidate for ischemic stroke prevention due to its anti-atherosclerotic effects in vivo. Although valproate use is associated with decreased ischemic stroke risk in observational studies, confounding by indication precludes causal conclusions. AIMS: We applied Mendelian randomization to determine whether genetic variants that influence seizure response among valproate users associate with ischemic stroke. METHODS: We derived a genetic score for valproate response using genome-wide association data of seizure response after valproate intake from the Epilepsy Pharmacogenomics Consortium. We then tested this score among valproate users of the UK Biobank for association with incident and recurrent ischemic stroke using Cox proportional hazard models. As replication, we tested found associations in an independent cohort of valproate users of the Mass General Brigham Biobank. RESULTS: Among 2150 valproate users (mean 56 years, 54% females), 82 ischemic strokes occurred over a mean 12 year follow-up. Higher valproate response genetic score was associated with higher serum valproate levels (+5.78 µg/ml per 1 standard deviation (SD), 95% confidence interval (CI) (3.45, 8.11)). After adjusting for age and sex, higher valproate response genetic score was associated with lower ischemic stroke risk (hazard ratio (HR) per 1 SD 0.73, 95% CI (0.58, 0.91)) with a halving of absolute risk in the highest compared to the lowest score tertile (4.8% vs 2.5%, p trend = 0.027). Among 194 valproate users with prevalent stroke at baseline, a higher valproate response genetic score was associated with lower recurrent ischemic stroke risk (HR per 1 SD 0.53, 95% CI (0.32, 0.86)) with reduced absolute risk in the highest compared to the lowest score tertile (3/51, 5.9% vs 13/71, 18.3%, p trend = 0.026). The valproate response genetic score was not associated with ischemic stroke among the 427,997 valproate non-users (p = 0.61), suggesting minimal pleiotropy. In 1241 valproate users of the Mass General Brigham Biobank with 99 ischemic stroke events over 6.5 years follow-up, we replicated our observed associations between the valproate response genetic score and ischemic stroke (HR per 1 SD 0.77, 95% CI (0.61, 0.97)). CONCLUSION: These results demonstrate that a genetically predicted favorable seizure response to valproate is associated with higher serum valproate levels and reduced ischemic stroke risk among valproate users, providing causal support for valproate effectiveness in ischemic stroke prevention. The strongest effect was found for recurrent ischemic stroke, suggesting potential dual-use benefits of valproate for post-stroke epilepsy. Clinical trials will be required in order to identify populations that may benefit most from valproate for stroke prevention. DATA ACCESS STATEMENT: UK Biobank participant data are available after approval of a research proposal. The weights of the used genetic scores are available in the Supplemental Tables.


Asunto(s)
Epilepsia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Masculino , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Convulsiones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Ácido Valproico/uso terapéutico , Análisis de la Aleatorización Mendeliana
2.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546337

RESUMEN

Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders. Understanding of their pathogenic mechanisms remains sparse, and therapeutic options are lacking. We characterized a mouse model lacking the Cyp2u1 gene, loss of which is known to be involved in a complex form of these diseases in humans. We showed that this model partially recapitulated the clinical and biochemical phenotypes of patients. Using electron microscopy, lipidomic, and proteomic studies, we identified vitamin B2 as a substrate of the CYP2U1 enzyme, as well as coenzyme Q, neopterin, and IFN-α levels as putative biomarkers in mice and fluids obtained from the largest series of CYP2U1-mutated patients reported so far. We also confirmed brain calcifications as a potential biomarker in patients. Our results suggest that CYP2U1 deficiency disrupts mitochondrial function and impacts proper neurodevelopment, which could be prevented by folate supplementation in our mouse model, followed by a neurodegenerative process altering multiple neuronal and extraneuronal tissues.


Asunto(s)
Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Ácido Fólico/farmacología , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Fenotipo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA