Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(31): e2302809120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37467285

RESUMEN

Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.


Asunto(s)
Hígado Graso , Obesidad , Ratones , Ratas , Masculino , Femenino , Animales , Obesidad/genética , Melaninas/genética , Hipotálamo , Inflamación , Dieta Alta en Grasa/efectos adversos , Neuronas , Mediadores de Inflamación , Prostaglandinas
2.
J Neurosci Res ; 99(6): 1598-1617, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33618436

RESUMEN

Glutamate transporter proteins, expressed on both neurons and glia, serve as the main gatekeepers that dictate the spatial and temporal actions of extracellular glutamate. Glutamate is essential to the function of the healthy brain yet paradoxically contributes to the toxicity associated with many neurodegenerative diseases. Rapid transporter-mediated glutamate uptake, primarily occurring at astrocytic processes, tightens the efficiency of excitatory network activity and prevents toxic glutamate build-up in the extracellular space. Glutamate transporter dysfunction is thought to underlie myriad central nervous system (CNS) diseases including Alzheimer and Huntington disease. Over the past few decades, techniques such as biochemical uptake assays and electrophysiological recordings of transporter currents from individual astrocytes have revealed the remarkable ability of the CNS to efficiently clear extracellular glutamate. In more recent years, the rapidly evolving glutamate-sensing "sniffers" now allow researchers to visualize real-time glutamate transients on a millisecond time scale with single synapse spatial resolution in defined cell populations. As we transition to an increased reliance on optical-based methods of glutamate visualization and quantification, it is of utmost importance to understand not only the advantages that glutamate biosensors bring to the table but also the associated caveats and their implications for data interpretation. In this review, we summarize the strengths and limitations of the commonly used methods to quantify glutamate uptake. We then discuss what these techniques, when viewed as a complementary whole, have told us about the brain's ability to regulate glutamate levels, in both health and in the context of neurodegenerative disease.


Asunto(s)
Química Encefálica , Ácido Glutámico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Animales , Humanos
3.
J Neurosci ; 30(24): 8061-70, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20554857

RESUMEN

Active neurons have a high demand for energy substrate, which is thought to be mainly supplied as lactate by astrocytes. Heavy lactate dependence of neuronal activity suggests that there may be a mechanism that detects and controls lactate levels and/or gates brain activation accordingly. Here, we demonstrate that orexin neurons can behave as such lactate sensors. Using acute brain slice preparations and patch-clamp techniques, we show that the monocarboxylate transporter blocker alpha-cyano-4-hydroxycinnamate (4-CIN) inhibits the spontaneous activity of orexin neurons despite the presence of extracellular glucose. Furthermore, fluoroacetate, a glial toxin, inhibits orexin neurons in the presence of glucose but not lactate. Thus, orexin neurons specifically use astrocyte-derived lactate. The effect of lactate on firing activity is concentration dependent, an essential characteristic of lactate sensors. Furthermore, lactate disinhibits and sensitizes these neurons for subsequent excitation. 4-CIN has no effect on the activity of some arcuate neurons, indicating that lactate dependency is not universal. Orexin neurons show an indirect concentration-dependent sensitivity to glucose below 1 mm, responding by hyperpolarization, which is mediated by ATP-sensitive potassium channels composed of Kir6.1 and SUR1 subunits. In conclusion, our study suggests that lactate is a critical energy substrate and a regulator of the orexin system. Together with the known effects of orexins in inducing arousal, food intake, and hepatic glucose production, as well as lactate release from astrocytes in response to neuronal activity, our study suggests that orexin neurons play an integral part in balancing brain activity and energy supply.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales KATP/fisiología , Ácido Láctico/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Astrocitos/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Ácidos Cumáricos/farmacología , Relación Dosis-Respuesta a Droga , Fluoroacetatos/farmacología , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Gliburida/farmacología , Hipoglucemiantes/farmacología , Hipotálamo/citología , Técnicas In Vitro , Ionóforos/farmacología , Canales KATP/antagonistas & inhibidores , Canales KATP/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Orexinas , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
4.
J Comp Neurol ; 497(2): 155-65, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16705679

RESUMEN

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus with heavy projections to the nucleus accumbens and other limbic regions. Previous studies have shown that the PVT contains fibers immunoreactive for cocaine- and amphetamine-related transcript (CART). The purpose of the present study was to determine the location of CART neurons innervating the PVT of the rat by using retrograde tracing with cholera toxin B (CTb) combined with immunofluorescence for CTb and CART (amino acid sequence 55-102). Immunohistochemical analysis of CART in the dorsal thalamus showed that the PVT is densely innervated by CART fibers whereas adjacent midline and intralaminar thalamic nuclei are unlabeled. Injections of CTb in the dorsal midline thalamus retrogradely labeled neurons in several areas of the hypothalamus and brainstem which also contained CART neurons. The largest number of double-labeled neurons (CTb/CART) was found in the arcuate nucleus of the hypothalamus. CTb/CART neurons were also found in the lateral hypothalamus, zona incerta, and periventricular hypothalamus. These results indicate that the arcuate nucleus is a major source of CART fibers in the PVT. CART neurons in the arcuate nucleus monitor circulating hormonal signals and may regulate food intake and hypothalamic-pituitary-adrenal (HPA) activity. Consequently, CART neurons in the arcuate nucleus may transmit signals to the PVT which in turn may influence limbic regions involved in regulating food intake and the HPA.


Asunto(s)
Hipotálamo/citología , Núcleos Talámicos de la Línea Media/anatomía & histología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Toxina del Cólera/farmacocinética , Inmunohistoquímica/métodos , Masculino , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Ratas , Ratas Sprague-Dawley , Sinaptofisina/metabolismo
5.
Brain Res ; 1059(2): 179-88, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16168969

RESUMEN

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus with projections to limbic forebrain areas such as the nucleus accumbens and amygdala. The orexin (hypocretin) peptides are synthesized in hypothalamic neurons that project throughout the CNS. The present experiments were done to describe the extent of orexin fiber innervation of the PVT in comparison to other midline and intralaminar thalamic nuclei and to establish the location and proportion of orexin neurons innervating the PVT. All aspects of the anteroposterior PVT were found to be densely innervated by orexin fibers with numerous enlargements that also stained for synaptophysin, a marker for synaptic vesicle protein associated with pre-synaptic sites. Small discrete injections of cholera toxin B into the PVT of rats resulted in the retrograde labeling of a relatively small number of orexin neurons in the medial and lateral hypothalamus. The results also showed a lack of topographical organization among orexin neurons projecting to the PVT. Previous studies indicate that orexin neurons and neurons in the PVT appear to be most active during periods of arousal. Therefore, orexin neurons and their projections to the PVT may be part of a limbic forebrain arousal system.


Asunto(s)
Mapeo Encefálico , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Núcleos Talámicos de la Línea Media/metabolismo , Vías Nerviosas/metabolismo , Neuropéptidos/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Hipotálamo/citología , Masculino , Núcleos Talámicos de la Línea Media/citología , Vías Nerviosas/citología , Orexinas , Ratas , Ratas Sprague-Dawley , Sinaptofisina/metabolismo , Núcleos Talámicos/citología , Núcleos Talámicos/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA